This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 Iran MO (3rd Round), 6

let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle . prove IK is parallel to AL

2023 CMIMC Geometry, 2

Tags: geometry
Two circles have radius $2$ and $3$, and the distance between their centers is $10$. Let $E$ be the intersection of their two common external tangents, and $I$ be the intersection of their two common internal tangents. Compute $EI$. (A [i]common external tangent[/i] is a tangent line to two circles such that the circles are on the same side of the line, while a [i]common internal tangent[/i] is a tangent line to two circles such that the circles are on opposite sides of the line). [i]Proposed by Connor Gordon)[/i]

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

2023 Assara - South Russian Girl's MO, 2

Tags: angle , geometry
In the convex quadrilateral $ABCD$, point $X$ is selected on side $AD$, and the diagonals intersect at point $E$. It is known that $AC = BD$, $\angle ABX = \angle AX B = 50^o$, $\angle CAD = 51^o$, $\angle AED = 80^o$. Find the value of angle $\angle AXC$.

2009 Turkey MO (2nd round), 1

Tags: geometry
Let $H$ be the orthocenter of an acute triangle $ABC,$ and let $A_1, \: B_1, \: C_1$ be the feet of the altitudes belonging to the vertices $A, \: B, \: C,$ respectively. Let $K$ be a point on the smaller $AB_1$ arc of the circle with diameter $AB$ satisfying the condition $\angle HKB = \angle C_1KB.$ Let $M$ be the point of intersection of the line segment $AA_1$ and the circle with center $C$ and radius $CL$ where $KB \cap CC_1=\{L\}.$ Let $P$ and $Q$ be the points of intersection of the line $CC_1$ and the circle with center $B$ and radius $BM.$ Show that $A, \: K, \: P, \: Q$ are concyclic.

2007 AMC 12/AHSME, 19

Triangles $ ABC$ and $ ADE$ have areas $ 2007$ and $ 7002,$ respectively, with $ B \equal{} (0,0),$ $ C \equal{} (223,0),$ $ D \equal{} (680,380),$ and $ E \equal{} (689,389).$ What is the sum of all possible x-coordinates of $ A?$ $ \textbf{(A)}\ 282 \qquad \textbf{(B)}\ 300 \qquad \textbf{(C)}\ 600 \qquad \textbf{(D)}\ 900 \qquad \textbf{(E)}\ 1200$

2007 Iran Team Selection Test, 3

Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence. a) Prove that $B_{n}$ does not depend on location of $P$. b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.

LMT Team Rounds 2010-20, 2011

[b]p1.[/b] Triangle $ABC$ has side lengths $AB = 3^2$ and $BC = 4^2$. Given that $\angle ABC$ is a right angle, determine the length of $AC$. [b]p2.[/b] Suppose $m$ and $n$ are integers such that $m^2+n^2 = 65$. Find the largest possible value of $m-n$. [b]p3.[/b] Six middle school students are sitting in a circle, facing inwards, and doing math problems. There is a stack of nine math problems. A random student picks up the stack and, beginning with himself and proceeding clockwise around the circle, gives one problem to each student in order until the pile is exhausted. Aditya falls asleep and is therefore not the student who picks up the pile, although he still receives problem(s) in turn. If every other student is equally likely to have picked up the stack of problems and Vishwesh is sitting directly to Aditya’s left, what is the probability that Vishwesh receives exactly two problems? [b]p4.[/b] Paul bakes a pizza in $15$ minutes if he places it $2$ feet from the fire. The time the pizza takes to bake is directly proportional to the distance it is from the fire and the rate at which the pizza bakes is constant whenever the distance isn’t changed. Paul puts a pizza $2$ feet from the fire at $10:30$. Later, he makes another pizza, puts it $2$ feet away from the fire, and moves the first pizza to a distance of $3$ feet away from the fire instantly. If both pizzas finish baking at the same time, at what time are they both done? [b]p5.[/b] You have $n$ coins that are each worth a distinct, positive integer amount of cents. To hitch a ride with Charon, you must pay some unspecified integer amount between $10$ and $20$ cents inclusive, and Charon wants exact change paid with exactly two coins. What is the least possible value of $n$ such that you can be certain of appeasing Charon? [b]p6.[/b] Let $a, b$, and $c$ be positive integers such that $gcd(a, b)$, $gcd(b, c)$ and $gcd(c, a)$ are all greater than $1$, but $gcd(a, b, c) = 1$. Find the minimum possible value of $a + b + c$. [b]p7.[/b] Let $ABC$ be a triangle inscribed in a circle with $AB = 7$, $AC = 9$, and $BC = 8$. Suppose $D$ is the midpoint of minor arc $BC$ and that $X$ is the intersection of $\overline{AD}$ and $\overline{BC}$. Find the length of $\overline{BX}$. [b]p8.[/b] What are the last two digits of the simplified value of $1! + 3! + 5! + · · · + 2009! + 2011!$ ? [b]p9.[/b] How many terms are in the simplified expansion of $(L + M + T)^{10}$ ? [b]p10.[/b] Ben draws a circle of radius five at the origin, and draws a circle with radius $5$ centered at $(15, 0)$. What are all possible slopes for a line tangent to both of the circles? PS. You had better use hide for answers.

2024 Harvard-MIT Mathematics Tournament, 2

Tags: geometry
Let $ABC$ be a triangle with $\angle BAC = 90^o$. Let $D$, $E$, and $F$ be the feet of altitude, angle bisector, and median from $A$ to $BC$, respectively. If $DE = 3$ and $EF = 5$, compute the length of $BC$.

1996 APMO, 1

Let $ABCD$ be a quadrilateral $AB = BC = CD = DA$. Let $MN$ and $PQ$ be two segments perpendicular to the diagonal $BD$ and such that the distance between them is $d > \frac{BD}{2}$, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon $AMNCQP$ does not depend on the position of $MN$ and $PQ$ so long as the distance between them remains constant.

2014 Balkan MO Shortlist, G1

Tags: geometry
Let $ABC$ be an isosceles triangle, in which $AB=AC$ , and let $M$ and $N$ be two points on the sides $BC$ and $AC$, respectively such that $\angle BAM = \angle MNC$. Suppose that the lines $MN$ and $AB$ intersects at $P$. Prove that the bisectors of the angles $\angle BAM$ and $\angle BPM$ intersects at a point lying on the line $BC$

2021 LMT Fall, 4

Tags: geometry
Segment $AB$ of length $13$ is the diameter of a semicircle. Points $C$ and $D$ are located on the semicircle but not on segment $AB$. Segments $AC$ and $BD$ both have length $5$. Given that the length of $CD$ can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers, find $a +b$.

2003 Romania Team Selection Test, 8

Two circles $\omega_1$ and $\omega_2$ with radii $r_1$ and $r_2$, $r_2>r_1$, are externally tangent. The line $t_1$ is tangent to the circles $\omega_1$ and $\omega_2$ at points $A$ and $D$ respectively. The parallel line $t_2$ to the line $t_1$ is tangent to the circle $\omega_1$ and intersects the circle $\omega_2$ at points $E$ and $F$. The line $t_3$ passing through $D$ intersects the line $t_2$ and the circle $\omega_2$ in $B$ and $C$ respectively, both different of $E$ and $F$ respectively. Prove that the circumcircle of the triangle $ABC$ is tangent to the line $t_1$. [i]Dinu Serbanescu[/i]

ABMC Accuracy Rounds, 2022

[b]p1.[/b] Let $X = 2022 + 022 + 22 + 2$. When $X$ is divided by $22$, there is a remainder of $R$. What is the value of $R$? [b]p2.[/b] When Amy makes paper airplanes, her airplanes fly $75\%$ of the time. If her airplane flies, there is a $\frac56$ chance that it won’t fly straight. Given that she makes $80$ airplanes, what is the expected number airplanes that will fly straight? [b]p3.[/b] It takes Joshua working alone $24$ minutes to build a birdhouse, and his son working alone takes $16$ minutes to build one. The effective rate at which they work together is the sum of their individual working rates. How long in seconds will it take them to make one birdhouse together? [b]p4.[/b] If Katherine’s school is located exactly $5$ miles southwest of her house, and her soccer tournament is located exactly $12$ miles northwest of her house, how long, in hours, will it take Katherine to bike to her tournament right after school given she bikes at $0.5$ miles per hour? Assume she takes the shortest path possible. [b]p5.[/b] What is the largest possible integer value of $n$ such that $\frac{4n+2022}{n+1}$ is an integer? [b]p6.[/b] A caterpillar wants to go from the park situated at $(8, 5)$ back home, located at $(4, 10)$. He wants to avoid routes through $(6, 7)$ and $(7, 10)$. How many possible routes are there if the caterpillar can move in the north and west directions, one unit at a time? [b]p7.[/b] Let $\vartriangle ABC$ be a triangle with $AB = 2\sqrt{13}$, $BC = 6\sqrt2$. Construct square $BCDE$ such that $\vartriangle ABC$ is not contained in square $BCDE$. Given that $ACDB$ is a trapezoid with parallel bases $\overline{AC}$, $\overline{BD}$, find $AC$. [b]p8.[/b] How many integers $a$ with $1 \le a \le 1000$ satisfy $2^a \equiv 1$ (mod $25$) and $3^a \equiv 1$ (mod $29$)? [b]p9.[/b] Let $\vartriangle ABC$ be a right triangle with right angle at $B$ and $AB < BC$. Construct rectangle $ADEC$ such that $\overline{AC}$,$\overline{DE}$ are opposite sides of the rectangle, and $B$ lies on $\overline{DE}$. Let $\overline{DC}$ intersect $\overline{AB}$ at $M$ and let $\overline{AE}$ intersect $\overline{BC}$ at $N$. Given $CN = 6$, $BN = 4$, find the $m+n$ if $MN^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. [b]p10.[/b] An elimination-style rock-paper-scissors tournament occurs with $16$ players. The $16$ players are all ranked from $1$ to $16$ based on their rock-paper-scissor abilities where $1$ is the best and $16$ is the worst. When a higher ranked player and a lower ranked player play a round, the higher ranked player always beats the lower ranked player and moves on to the next round of the tournament. If the initial order of players are arranged randomly, and the expected value of the rank of the $2$nd place player of the tournament can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$ what is the value of $m+n$? [b]p11.[/b] Estimation (Tiebreaker) Estimate the number of twin primes (pairs of primes that differ by $2$) where both primes in the pair are less than $220022$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1975 Bulgaria National Olympiad, Problem 6

Some of the faces of a convex polyhedron $M$ are painted in blue, others are painted in white and there are no two walls with a common edge. Prove that if the sum of surfaces of the blue walls is bigger than half surface of $M$ then it may be inscribed a sphere in the polyhedron given $(M)$. [i](H. Lesov)[/i]

2010 Today's Calculation Of Integral, 551

In the coordinate plane, find the area of the region bounded by the curve $ C: y\equal{}\frac{x\plus{}1}{x^2\plus{}1}$ and the line $ L: y\equal{}1$.

2018 Oral Moscow Geometry Olympiad, 6

Cut each of the equilateral triangles with sides $2$ and $3$ into three parts and construct an equilateral triangle from all received parts.

2023-IMOC, G4

Tags: geometry
Given triangle $ABC$. $D$ is a point on $BC$. $AC$ meets $(ABD)$ again at $E$,and $AB$ meets $(ACD)$ again at $F$. $M$ is the midpoint of $EF$. $BC$ meets $(DEF)$ again at $P$. Prove that $\angle BAP = \angle MAC$.

2013 Canada National Olympiad, 3

Let $G$ be the centroid of a right-angled triangle $ABC$ with $\angle BCA = 90^\circ$. Let $P$ be the point on ray $AG$ such that $\angle CPA = \angle CAB$, and let $Q$ be the point on ray $BG$ such that $\angle CQB = \angle ABC$. Prove that the circumcircles of triangles $AQG$ and $BPG$ meet at a point on side $AB$.

2009 All-Russian Olympiad, 6

There are $ k$ rooks on a $ 10 \times 10$ chessboard. We mark all the squares that at least one rook can capture (we consider the square where the rook stands as captured by the rook). What is the maximum value of $ k$ so that the following holds for some arrangement of $ k$ rooks: after removing any rook from the chessboard, there is at least one marked square not captured by any of the remaining rooks.

2019 Sharygin Geometry Olympiad, 3

Tags: geometry
Let $P$ and $Q$ be isogonal conjugates inside triangle $ABC$. Let $\omega$ be the circumcircle of $ABC$. Let $A_1$ be a point on arc $BC$ of $\omega$ satisfying $\angle BA_1P = \angle CA_1Q$. Points $B_1$ and $C_1$ are defined similarly. Prove that $AA_1$, $BB_1$, $CC_1$ are concurrent.

2020 Iranian Geometry Olympiad, 3

Tags: geometry
According to the figure, three equilateral triangles with side lengths $a,b,c$ have one common vertex and do not have any other common point. The lengths $x, y$, and $z$ are defined as in the figure. Prove that $3(x+y+z)>2(a+b+c)$. [i]Proposed by Mahdi Etesamifard[/i]

2023 All-Russian Olympiad, 6

The plane $\alpha$ intersects the edges $AB$, $BC$, $CD$ and $DA$ of the tetrahedron $ABCD$ at points $X, Y, Z$ and $T$, respectively. It turned out, that points $Y$ and $T$ lie on a circle $\omega$ constructed with segment $XZ$ as the diameter. Point $P$ is marked in the plane $\alpha$ so that the lines $P Y$ and $P T$ are tangent to the circle $\omega$.Prove that the midpoints of the edges are $AB$, $BC$, $CD,$ $DA$ and the point $P$ lie in the same plane.

1962 Czech and Slovak Olympiad III A, 4

Consider a circle $k$ with center $S$ and radius $r$. Let a point $A\neq S$ be given with $SA=d<r$. Consider a light ray emitted at point $A$, reflected at point $B\in k$, further reflected in point $C\in k$, which then passes through the original point $A$. Compute the sinus of convex angle $SAB$ in terms of $d,r$ and discuss conditions of solvability.

2024 Kyiv City MO Round 1, Problem 2

$ABCD$ is a trapezoid with $BC\parallel AD$ and $BC = 2AD$. Point $M$ is chosen on the side $CD$ such that $AB = AM$. Prove that $BM \perp CD$. [i]Proposed by Bogdan Rublov[/i]