This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2006 Belarusian National Olympiad, 4

Given a quadrilateral $ABCD$ with $\angle ABC = \angle ADC$. Let $BM$ be the altitude of the triangle $ABC$, and $M$ belongs to $AC$. Point $M'$ is marked on the diagonal $AC$ so that $$\frac{AM \cdot CM'}{ AM' \cdot CM}= \frac{AB \cdot CD }{ BC \cdot AD}$$ Prove that the intersection point of $DM'$ and $BM$ coincides with the orthocenter of the triangle $ABC$. (M. Zhikhovich)

1994 India Regional Mathematical Olympiad, 2

In a triangle $ABC$, the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. If the radius if the incircle is $4$ units and if $BD, CE , AF$ are consecutive integers, find the sides of the triangle $ABC$.

Durer Math Competition CD Finals - geometry, 2016.C+4

Tags: circles , geometry
The two intersections of the circles $k_i$ and $k_{i + 1}$ are $P_i$ and $Q_i$ ($1 \le i \le 5, k_6 = k_1$). On the circle $k_1$ lies an arbitrary point $A$. Then the points $B, C, D, E, F, G, H, I, J, K$ lie on the circles $k_2, k_3, k_4, k_5, k_1, k_2, k_3, k_4, k_5, k_1$ respectively, such that $AP_1B, BP_2C, CP_3D, DP_4E, EP_5F, F Q_1G, GQ_2H, HQ_3I, IQ_4J, JQ_5K$ are straight line triplets. Prove that that $K = A$. [img]https://1.bp.blogspot.com/-g6rF1hcPE08/X9j1SEJT7-I/AAAAAAAAMzc/2rWIiWTHZ34zfWVeGujkCxRW1hSCw5oOwCLcBGAsYHQ/s16000/2016%2BDurer%2BC..4.png[/img] [i]Circles can have different radii, and They can be located in different ways from the figure. We assume that during editing none neither of the two points mentioned above coincide.[/i]

2006 Germany Team Selection Test, 2

In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively. Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ . [i]Proposed by Hojoo Lee, Korea[/i]

2017 Czech-Polish-Slovak Match, 2

Let ${\omega}$ be the circumcircle of an acute-angled triangle ${ABC}$. Point ${D}$ lies on the arc ${BC}$ of ${\omega}$ not containing point ${A}$. Point ${E}$ lies in the interior of the triangle ${ABC}$, does not lie on the line ${AD}$, and satis fies ${\angle DBE =\angle ACB}$ and ${\angle DCE = \angle ABC}$. Let ${F}$ be a point on the line ${AD}$ such that lines ${EF}$ and ${BC}$ are parallel, and let ${G}$ be a point on ${\omega}$ different from ${A}$ such that ${AF = FG}$. Prove that points ${D,E, F,G}$ lie on one circle. (Slovakia)

2015 Regional Olympiad of Mexico Southeast, 2

Tags: altitude , geometry
In a acutangle triangle $ABC, \angle B>\angle C$. Let $D$ the foot of the altitude from $A$ to $BC$ and $E$ the foot of the perpendicular from $D$ to $AC$. Let $F$ a point in $DE$. Prove that $AF$ and $BF$ are perpendiculars if and only if $EF\cdot DC=BD\cdot DE$.

2023 Malaysia IMONST 2, 6

Ivan has a parallelogram whose interior angles are $60^{\circ}, 120^{\circ}, 60^{\circ}, 120^{\circ}$ respectively, and all side lengths are integers. Is it possible that one of the diagonals has length $\sqrt{2024}$?

1986 Tournament Of Towns, (123) 5

Find the locus of the orthocentres (i.e. the point where three altitudes meet) of the triangles inscribed in a given circle . (A. Andjans, Riga)

2011 Argentina Team Selection Test, 6

Each square of $1\times 1$, of a $n\times n$ grid is colored using red or blue, in such way that between all the $2\times 2$ subgrids, there are all the possible colorations of a $2\times 2$ grid using red or blue, (colorations that can be obtained by using rotation or symmetry, are said to be different, so there are 16 possibilities). Find: a) The minimum value of $n$. b) For that value, find the least possible number of red squares.

1990 IMO Shortlist, 14

In the coordinate plane a rectangle with vertices $ (0, 0),$ $ (m, 0),$ $ (0, n),$ $ (m, n)$ is given where both $ m$ and $ n$ are odd integers. The rectangle is partitioned into triangles in such a way that [i](i)[/i] each triangle in the partition has at least one side (to be called a “good” side) that lies on a line of the form $ x \equal{} j$ or $ y \equal{} k,$ where $ j$ and $ k$ are integers, and the altitude on this side has length 1; [i](ii)[/i] each “bad” side (i.e., a side of any triangle in the partition that is not a “good” one) is a common side of two triangles in the partition. Prove that there exist at least two triangles in the partition each of which has two good sides.

2004 Germany Team Selection Test, 3

Given six real numbers $a$, $b$, $c$, $x$, $y$, $z$ such that $0 < b-c < a < b+c$ and $ax + by + cz = 0$. What is the sign of the sum $ayz + bzx + cxy$ ?

1975 All Soviet Union Mathematical Olympiad, 213

Three flies are crawling along the perimeter of the triangle $ABC$ in such a way, that the centre of their masses is a constant point. One of the flies has already passed along all the perimeter. Prove that the centre of the flies' masses coincides with the centre of masses of the triangle $ABC$ . (The centre of masses for the triangle is the point of medians intersection.

1993 AMC 8, 18

The rectangle shown has length $AC=32$, width $AE=20$, and $B$ and $F$ are midpoints of $\overline{AC}$ and $\overline{AE}$, respectively. The area of quadrilateral $ABDF$ is [asy] pair A,B,C,D,EE,F; A = (0,20); B = (16,20); C = (32,20); D = (32,0); EE = (0,0); F = (0,10); draw(A--C--D--EE--cycle); draw(B--D--F); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); label("$A$",A,NW); label("$B$",B,N); label("$C$",C,NE); label("$D$",D,SE); label("$E$",EE,SW); label("$F$",F,W); [/asy] $\text{(A)}\ 320 \qquad \text{(B)}\ 325 \qquad \text{(C)}\ 330 \qquad \text{(D)}\ 335 \qquad \text{(E)}\ 340$

KoMaL A Problems 2024/2025, A. 891

Let $ABC$ be an acute triangle. Points $B'$ and $C'$ are located on the interior of sides $AB$ and $AC$, respectively. Let $M$ denote the second intersection of the circumcircles of triangles $ABC$ and $AB'C'$, while let $N$ denote the second intersection of the circumcircles of triangles $ABC'$ and $AB'C$. Reflect $M$ across lines $AB$ and $AC$, and let $l$ denote the line through the reflections. a) Prove that the line through $M$ perpendicular to $AM$, the line $AK$, and $l$ are either concurrent or all parallel. b) Show that if the three lines are concurrent at $S$, then triangles $SBC'$ and $SCB'$ have equal areas. [i]Proposed by Áron Bán-Szabó, Budapest[/i]

Brazil L2 Finals (OBM) - geometry, 2017.5

Tags: incenter , geometry
Let $ABC$ be a triangle with, $AB$ ≠ $AC$, and let $K$ is your incenter. The points $P$ and $Q$ are the points of the intersections of the circumcicle($BCK$) with the line(s) $AB$ and $AC$, respectively. Let $D$ be intersection of $AK$ and $BC$. Show that $P, Q, D$ are collinears.

2016 India IMO Training Camp, 2

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2010 Saudi Arabia BMO TST, 3

Let $ABC$ be a right angled triangle with $\angle A = 90^o$and $BC = a$, $AC = b$, $AB = c$. Let $d$ be a line passing trough the incenter of triangle and intersecting the sides $AB$ and $AC$ in $P$ and $Q$, respectively. (a) Prove that $$b \cdot \left( \frac{PB}{PA}\right)+ c \cdot \left( \frac{QC}{QA}\right) =a$$ (b) Find the minimum of $$\left( \frac{PB}{PA}\right)^ 2+\left( \frac{QC}{QA}\right)^ 2$$

2017 Rioplatense Mathematical Olympiad, Level 3, 5

Tags: angle , geometry
Let $ABC$ be a triangle and $I$ is your incenter, let $P$ be a point in $AC$ such that $PI$ is perpendicular to $AC$, and let $D$ be the reflection of $B$ wrt circumcenter of $\triangle ABC$. The line $DI$ intersects again the circumcircle of $\triangle ABC$ in the point $Q$. Prove that $QP$ is the angle bisector of the angle $\angle AQC$.

MathLinks Contest 4th, 5.2

Tags: geometry
Let $ABCD$ be a convex quadrilateral, and let $K$ be a point on side$ AB$ such that $\angle KDA = \angle BCD$. Let $L$ be a point on the diagonal $AC$ such that $KL \parallel BC$. Prove that $\angle KDB = \angle LDC$.

2009 Puerto Rico Team Selection Test, 1

By the time a party is over, $ 28$ handshakes have occurred. If everyone shook everyone else's hand once, how many people attended the party?

2016 Sharygin Geometry Olympiad, P21

The areas of rectangles $P$ and $Q$ are equal, but the diagonal of $P$ is greater. Rectangle $Q$ can be covered by two copies of $P$. Prove that $P$ can be covered by two copies of $Q$.

2018 Greece Team Selection Test, 2

A triangle $ABC$ is inscribed in a circle $(C)$ .Let $G$ the centroid of $\triangle ABC$ . We draw the altitudes $AD,BE,CF$ of the given triangle .Rays $AG$ and $GD$ meet (C) at $M$ and $N$.Prove that points $ F,E,M,N $ are concyclic.

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

2010 VJIMC, Problem 4

Let $f:[0,1]\to\mathbb R$ be a function satisfying $$|f(x)-f(y)|\le|x-y|$$for every $x,y\in[0,1]$. Show that for every $\varepsilon>0$ there exists a countable family of rectangles $(R_i)$ of dimensions $a_i\times b_i$, $a_i\le b_i$ in the plane such that $$\{(x,f(x)):x\in[0,1]\}\subset\bigcup_iR_i\text{ and }\sum_ia_i<\varepsilon.$$(The edges of the rectangles are not necessarily parallel to the coordinate axes.)

2010 National Olympiad First Round, 21

A right circular cone and a right cylinder with same height $20$ does not have same circular base but the circles are coplanar and their centers are same. If the cone and the cylinder are at the same side of the plane and their base radii are $20$ and $10$, respectively, what is the ratio of the volume of the part of the cone inside the cylinder over the volume of the part of the cone outside the cylinder? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ \frac{4}{3} \qquad\textbf{(E)}\ 1 $