Found problems: 25757
2018 BAMO, D/2
Let points $P_1, P_2, P_3$, and $P_4$ be arranged around a circle in that order. (One possible example is drawn in Diagram 1.) Next draw a line through $P_4$ parallel to $P_1P_2$, intersecting the circle again at $P_5$. (If the line happens to be tangent to the circle, we simply take $P_5 =P_4$, as in Diagram 2. In other words, we consider the second intersection to be the point of tangency again.) Repeat this process twice more, drawing a line through $P_5$ parallel to $P_2P_3$, intersecting the circle again at $P_6$, and finally drawing a line through $P_6$ parallel to $P_3P_4$, intersecting the circle again at $P_7$. Prove that $P_7$ is the same point as $P_1$.
[img]https://cdn.artofproblemsolving.com/attachments/5/7/fa8c1b88f78c09c3afad2c33b50c2be4635a73.png[/img]
2024 Czech-Polish-Slovak Junior Match, 3
Let $ABCD$ be a convex quadrilateral with $AB=BD=DC$ and $AB \perp BD \perp DC$. Let $M$ be the midpoint of segment $BC$. Show that $\angle BAM+\angle DCA=45^\circ$.
2016 Bosnia And Herzegovina - Regional Olympiad, 3
Circle of radius $R_1$ is inscribed in an acute angle $\alpha$. Second circle with radius $R_2$ touches one of the sides forming the angle $\alpha$ in same point as first circle and intersects the second side in points $A$ and $B$, such that centers of both circles lie inside angle $\alpha$. Prove that $$AB=4\cos{\frac{\alpha}{2}}\sqrt{(R_2-R_1)\left(R_1 \cos^2 \frac{\alpha}{2}+R_2 \sin^2 \frac{\alpha}{2}\right)}$$
2018 AIME Problems, 15
David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, \(A\), \(B\), \(C\), which can each be inscribed in a circle with radius \(1\). Let \(\varphi_A\) denote the measure of the acute angle made by the diagonals of quadrilateral \(A\), and define \(\varphi_B\) and \(\varphi_C\) similarly. Suppose that \(\sin\varphi_A=\frac{2}{3}\), \(\sin\varphi_B=\frac{3}{5}\), and \(\sin\varphi_C=\frac{6}{7}\). All three quadrilaterals have the same area \(K\), which can be written in the form \(\frac{m}{n}\), where \(m\) and \(n\) are relatively prime positive integers. Find \(m+n\).
2006 JHMT, 4
The square $DEFG$ is contained in equilateral triangle $ABC$, with $E$ on $\overline{AC}$, $G$ on $\overline{AD}$, and $F$ as the midpoint of $\overline{BC}$. Find $AD$ if $DE = 6$.
1987 IMO Longlists, 45
Let us consider a variable polygon with $2n$ sides ($n \in N$) in a fixed circle such that $2n - 1$ of its sides pass through $2n - 1$ fixed points lying on a straight line $\Delta$. Prove that the last side also passes through a fixed point lying on $\Delta .$
2009 Tuymaada Olympiad, 2
$ M$ is the midpoint of base $ BC$ in a trapezoid $ ABCD$. A point $ P$ is chosen on the base $ AD$. The line $ PM$ meets the line $ CD$ at a point $ Q$ such that $ C$ lies between $ Q$ and $ D$. The perpendicular to the bases drawn through $ P$ meets the line $ BQ$ at $ K$. Prove that $ \angle QBC \equal{} \angle KDA$.
[i]Proposed by S. Berlov[/i]
2014 Bosnia And Herzegovina - Regional Olympiad, 3
Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$.
Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$.
[i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$.
Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.
1996 India Regional Mathematical Olympiad, 4
Suppose $N$ is an $n$ digit positive integer such that
(a) all its digits are distinct;
(b) the sum of any three consecutive digits is divisible by $5$.
Prove that $n \leq 6$. Further, show that starting with any digit, one can find a six digit number with these properties.
Indonesia MO Shortlist - geometry, g9
Given a triangle $ABC$, the points $D$, $E$, and $F$ lie on the sides $BC$, $CA$, and $AB$, respectively, are such that
$$DC + CE = EA + AF = FB + BD.$$ Prove that $$DE + EF + FD \ge \frac12 (AB + BC + CA).$$
1999 Romania Team Selection Test, 17
A polyhedron $P$ is given in space. Find whether there exist three edges in $P$ which can be the sides of a triangle. Justify your answer!
[i]Barbu Berceanu[/i]
2005 Purple Comet Problems, 18
The side lengths of a trapezoid are $\sqrt[4]{3}, \sqrt[4]{3}, \sqrt[4]{3}$, and $2 \cdot \sqrt[4]{3}$. Its area is the ratio of two relatively prime positive integers, $m$ and $n$. Find $m + n$.
1996 Tournament Of Towns, (514) 1
Consider three edges $a, b, c$ of a cube such that no two of these edges lie in one plane. Find the locus of points inside the cube which are equidistant from $a$, $b$ and $c$.
(V Proizvolov,)
2013 Mexico National Olympiad, 2
Let $ABCD$ be a parallelogram with the angle at $A$ obtuse. Let $P$ be a point on segment $BD$. The circle with center $P$ passing through $A$ cuts line $AD$ at $A$ and $Y$ and cuts line $AB$ at $A$ and $X$. Line $AP$ intersects $BC$ at $Q$ and $CD$ at $R$. Prove $\angle XPY = \angle XQY + \angle XRY$.
Cono Sur Shortlist - geometry, 2003.G4
In a triangle $ABC$ , let $P$ be a point on its circumscribed circle (on the arc $AC$ that does not contain $B$). Let $H,H_1,H_2$ and $H_3$ be the orthocenters of triangles $ABC, BCP, ACP$ and $ABP$, respectively. Let $L = PB \cap AC$ and $J = HH_2 \cap H_1H_3$. If $M$ and $N$ are the midpoints of $JH$ and $LP$, respectively, prove that $MN$ and $JL$ intersect at their midpoint.
2024 India IMOTC, 7
Let $ABC$ be an acute-angled triangle with $AB<AC$, incentre $I$, and let $M$ be the midpoint of major arc $BAC$. Suppose the perpendicular line from $A$ to segment $BC$ meets lines $BI$, $CI$, and $MI$ at points $P$, $Q$, and $K$ respectively. Prove that the $A-$median line in $\triangle AIK$ passes through the circumcentre of $\triangle PIQ$.
[i]Proposed by Pranjal Srivastava and Rohan Goyal[/i]
2019 Mathematical Talent Reward Programme, MCQ: P 4
Suppose $\triangle ABC$ is a triangle. From the vertex $A$ draw the altitude $AH$, angle bisector (of $\angle BAC$) $AP$, median $AD$ and these intersect the side $BC$ at the points (from left in order) $H$, $P$, $D$ respectively. Let $\angle CAH = \angle HAP = \angle PAD = \angle DAB$. Then $\angle ACH =$
[list=1]
[*] $22.5^{\circ}$
[*] $45^{\circ}$
[*] $67.5^{\circ}$
[*] None of the above
[/list]
2010 Tournament Of Towns, 1
There are $100$ points on the plane. All $4950$ pairwise distances between two points have been recorded.
$(a)$ A single record has been erased. Is it always possible to restore it using the remaining records?
$(b)$ Suppose no three points are on a line, and $k$ records were erased. What is the maximum value of $k$ such that restoration of all the erased records is always possible?
2001 All-Russian Olympiad, 3
Points $A_1, B_1, C_1$ inside an acute-angled triangle $ABC$ are selected on the altitudes from $A, B, C$ respectively so that the sum of the areas of triangles $ABC_1, BCA_1$, and $CAB_1$ is equal to the area of triangle $ABC$. Prove that the circumcircle of triangle $A_1B_1C_1$ passes through the orthocenter $H$ of triangle $ABC$.
2021 Yasinsky Geometry Olympiad, 5
Construct an equilateral trapezoid given the height and the midline, if it is known that the midline is divided by diagonals into three equal parts.
(Grigory Filippovsky)
2001 APMO, 3
Two equal-sized regular $n$-gons intersect to form a $2n$-gon $C$. Prove that the sum of the sides of $C$ which form part of one $n$-gon equals half the perimeter of $C$.
[i]Alternative formulation:[/i]
Let two equal regular $n$-gons $S$ and $T$ be located in the plane such that their intersection $S\cap T$ is a $2n$-gon (with $n\ge 3$). The sides of the polygon $S$ are coloured in red and the sides of $T$ in blue.
Prove that the sum of the lengths of the blue sides of the polygon $S\cap T$ is equal to the sum of the lengths of its red sides.
2020 ABMC, Team
[u]Round 1[/u]
[b]1.1.[/b] A person asks for help every $3$ seconds. Over a time period of $5$ minutes, how many times will they ask for help?
[b]1.2.[/b] In a big bag, there are $14$ red marbles, $15$ blue marbles, and$ 16$ white marbles. If Anuj takes a marble out of the bag each time without replacement, how many marbles does Anuj need to remove to be sure that he will have at least $3$ red marbles?
[b]1.3.[/b] If Josh has $5$ distinct candies, how many ways can he pick $3$ of them to eat?
[u]Round 2[/u]
[b]2.1.[/b] Annie has a circular pizza. She makes $4$ straight cuts. What is the minimum number of slices of pizza that she can make?
[b]2.2.[/b] What is the sum of the first $4$ prime numbers that can be written as the sum of two perfect squares?
[b]2.3.[/b] Consider a regular octagon $ABCDEFGH$ inscribed in a circle of area $64\pi$. If the length of arc $ABC$ is $n\pi$, what is $n$?
[u]Round 3[/u]
[b]3.1.[/b] Let $ABCDEF$ be an equiangular hexagon with consecutive sides of length $6, 5, 3, 8$, and $3$. Find the length of the sixth side.
[b]3.2.[/b] Jack writes all of the integers from $ 1$ to $ n$ on a blackboard except the even primes. He selects one of the numbers and erases all of its digits except the leftmost one. He adds up the new list of numbers and finds that the sum is $2020$. What was the number he chose?
[b]3.3.[/b] Our original competition date was scheduled for April $11$, $2020$ which is a Saturday. The numbers $4116$ and $2020$ have the same remainder when divided by $x$. If $x$ is a prime number, find the sum of all possible $x$.
[u]Round 4[/u]
[b]4.1.[/b] The polynomials $5p^2 + 13pq + cq^2$ and $5p^2 + 13pq - cq^2$ where $c$ is a positive integer can both be factored into linear binomials with integer coefficients. Find $c$.
[b]4.2.[/b] In a Cartesian coordinate plane, how many ways are there to get from $(0, 0)$ to $(2, 3)$ in $7$ moves, if each move consists of a moving one unit either up, down, left, or right?
[b]4.3.[/b] Bob the Builder is building houses. On Monday he finds an empty field. Each day starting on Monday, he finishes building a house at noon. On the $n$th day, there is a $\frac{n}{8}$ chance that a storm will appear at $3:14$ PM and destroy all the houses on the field. At any given moment, Bob feels sad if and only if there is exactly $1$ house left on the field that is not destroyed. The probability that he will not be sad on Friday at $6$ PM can be expressed as $p/q$ in simplest form. Find $p + q$.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784570p24468605]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 Sharygin Geometry Olympiad, 8.3
A parallelogram $ABCD$ is given. Two circles with centers at the vertices $A$ and $C$ pass through $B$. The straight line $\ell$ that passes through $B$ and crosses the circles at second time at points $X, Y$ respectively. Prove that $DX = DY$.
2010 IFYM, Sozopol, 6
In $\Delta ABC$ $(AB>BC)$ $BM$ and $BL$ $(M,L\in AC)$ are a median and an angle bisector respectively. Let the line through $M$, parallel to $AB$, intersect $BL$ in point $D$ and the line through $L$, parallel to $BC$, intersect $BM$ in point $E$. Prove that $DE\perp BL$.
2014 India IMO Training Camp, 3
Starting with the triple $(1007\sqrt{2},2014\sqrt{2},1007\sqrt{14})$, define a sequence of triples $(x_{n},y_{n},z_{n})$ by
$x_{n+1}=\sqrt{x_{n}(y_{n}+z_{n}-x_{n})}$
$y_{n+1}=\sqrt{y_{n}(z_{n}+x_{n}-y_{n})}$
$ z_{n+1}=\sqrt{z_{n}(x_{n}+y_{n}-z_{n})}$
for $n\geq 0$.Show that each of the sequences $\langle x_n\rangle _{n\geq 0},\langle y_n\rangle_{n\geq 0},\langle z_n\rangle_{n\geq 0}$ converges to a limit and find these limits.