This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1998 May Olympiad, 2

Let $ABC$ be an equilateral triangle. $N$ is a point on the side $AC$ such that $\vec{AC} = 7\vec{AN}$, $M$ is a point on the side $AB$ such that $MN$ is parallel to $BC$ and $P$ is a point on the side $BC$ such that $MP$ is parallel to $AC$. Find the ratio of areas $\frac{ (MNP)}{(ABC)}$

1956 Poland - Second Round, 6

Prove that if in a tetrahedron $ ABCD $ the segments connecting the vertices of the tetrahedron with the centers of circles inscribed in opposite faces intersect at one point, then $$AB \cdot CD = AC \cdot BD = AD \cdot BC$$ and that the converse also holds.

MOAA Individual Speed General Rounds, 2018I Sample

[b]p1.[/b] Will is distributing his money to three friends. Since he likes some friends more than others, the amount of money he gives each is in the ratio of $5 : 3 : 2$. If the person who received neither the least nor greatest amount of money was given $42$ dollars, how many dollars did Will distribute in all? [b]p2.[/b] Fan, Zhu, and Ming are driving around a circular track. Fan drives $24$ times as fast as Ming and Zhu drives $9$ times as fast as Ming. All three drivers start at the same point on the track and keep driving until Fan and Zhu pass Ming at the same time. During this interval, how many laps have Fan and Zhu driven together? [b]p3.[/b] Mr. DoBa is playing a game with Gunga the Gorilla. They both agree to think of a positive integer from $1$ to $120$, inclusive. Let the sum of their numbers be $n$. Let the remainder of the operation $\frac{n^2}{4}$ be $r$. If $r$ is $0$ or $1$, Mr. DoBa wins. Otherwise, Gunga wins. Let the probability that Mr. DoBa wins a given round of this game be $p$. What is $120p$? [b]p4.[/b] Let S be the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. How many subsets of $S$ are there such that if $a$ is the number of even numbers in the subset and $b$ is the number of odd numbers in the subset, then $a$ and $b$ are either both odd or both even? By definition, subsets of $S$ are unordered and only contain distinct elements that belong to $S$. [b]p5.[/b] Phillips Academy has five clusters, $WQN$, $WQS$, $PKN$, $FLG$ and $ABB$. The Blue Key heads are going to visit all five clusters in some order, except $WQS$ must be visited before $WQN$. How many total ways can they visit the five clusters? [b]p6.[/b] An astronaut is in a spaceship which is a cube of side length $6$. He can go outside but has to be within a distance of $3$ from the spaceship, as that is the length of the rope that tethers him to the ship. Out of all the possible points he can reach, the surface area of the outer surface can be expressed as $m+n\pi$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$? [b]p7.[/b] Let $ABCD$ be a square and $E$ be a point in its interior such that $CDE$ is an equilateral triangle. The circumcircle of $CDE$ intersects sides $AD$ and $BC$ at $D$, $F$ and $C$, $G$, respectively. If $AB = 30$, the area of $AFGB$ can be expressed as $a-b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and c is not divisible by the square of any prime. Find $a + b + c$. [b]p8.[/b] Suppose that $x, y, z$ satisfy the equations $$x + y + z = 3$$ $$x^2 + y^2 + z^2 = 3$$ $$x^3 + y^3 + z^3 = 3$$ Let the sum of all possible values of $x$ be $N$. What is $12000N$? [b]p9.[/b] In circle $O$ inscribe triangle $\vartriangle ABC$ so that $AB = 13$, $BC = 14$, and $CA = 15$. Let $D$ be the midpoint of arc $BC$, and let $AD$ intersect $BC$ at $E$. Determine the value of $DE \cdot DA$. [b]p10.[/b] How many ways are there to color the vertices of a regular octagon in $3$ colors such that no two adjacent vertices have the same color? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 Poland - Second Round, 2

The quadrilateral $ABCD$ is inscribed in the circle $o$. Bisectors of angles $DAB$ and $ABC$ intersect at point $P$, and bisectors of angles $BCD$ and $CDA$ intersect in point $Q$. Point $M$ is the center of this arc $BC$ of the circle $o$ which does not contain points $D$ and $A$. Point $N$ is the center of the arc $DA$ of the circle $o$, which does not contain points $B$ and $C$. Prove that the points $P$ and $Q$ lie on the line perpendicular to $MN$.

2012 Today's Calculation Of Integral, 771

(1) Find the range of $a$ for which there exist two common tangent lines of the curve $y=\frac{8}{27}x^3$ and the parabola $y=(x+a)^2$ other than the $x$ axis. (2) For the range of $a$ found in the previous question, express the area bounded by the two tangent lines and the parabola $y=(x+a)^2$ in terms of $a$.

2017 India IMO Training Camp, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

MMPC Part II 1996 - 2019, 2007

[b]p1.[/b] Let $A$ be the point $(-1, 0)$, $B$ be the point $(0, 1)$ and $C$ be the point $(1, 0)$ on the $xy$-plane. Assume that $P(x, y)$ is a point on the $xy$-plane that satisfies the following condition $$d_1 \cdot d_2 = (d_3)^2,$$ where $d_1$ is the distance from $P$ to the line $AB$, $d_2$ is the distance from $P$ to the line $BC$, and $d_3$ is the distance from $P$ to the line $AC$. Find the equation(s) that must be satisfied by the point $P(x, y)$. [b]p2.[/b] On Day $1$, Peter sends an email to a female friend and a male friend with the following instructions: $\bullet$ If you’re a male, send this email to $2$ female friends tomorrow, including the instructions. $\bullet$ If you’re a female, send this email to $1$ male friend tomorrow, including the instructions. Assuming that everyone checks their email daily and follows the instructions, how many emails will be sent from Day $1$ to Day $365$ (inclusive)? [b]p3.[/b] For every rational number $\frac{a}{b}$ in the interval $(0, 1]$, consider the interval of length $\frac{1}{2b^2}$ with $\frac{a}{b}$ as the center, that is, the interval $\left( \frac{a}{b}- \frac{1}{2b^2}, \frac{a}{b}+\frac{1}{2b^2}\right)$ . Show that $\frac{\sqrt2}{2}$ is not contained in any of these intervals. [b]p4.[/b] Let $a$ and $b$ be real numbers such that $0 < b < a < 1$ with the property that $$\log_a x + \log_b x = 4 \log_{ab} x - \left(\log_b (ab^{-1} - 1)\right)\left(\log_a (ab^{-1} - 1) + 2 log_a ab^{-1} \right)$$ for some positive real number $x \ne 1$. Find the value of $\frac{a}{b}$. [b]p5.[/b] Find the largest positive constant $\lambda$ such that $$\lambda a^2 b^2 (a - b)^2 \le (a^2 - ab + b^2)^3$$ is true for all real numbers $a$ and $b$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Iran Team Selection Test, 1

Consider a regular $2^k$-gon with center $O$ and label its sides clockwise by $l_1,l_2,...,l_{2^k}$. Reflect $O$ with respect to $l_1$, then reflect the resulting point with respect to $l_2$ and do this process until the last side. Prove that the distance between the final point and $O$ is less than the perimeter of the $2^k$-gon. [i]Proposed by Hesam Rajabzade[/i]

2012 Tournament of Towns, 4

A quadrilateral $ABCD$ with no parallel sides is inscribed in a circle. Two circles, one passing through $A$ and $B$, and the other through $C$ and $D$, are tangent to each other at $X$. Prove that the locus of $X$ is a circle.

2016 Peru IMO TST, 5

Tags: triangle , geometry
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2017 China Team Selection Test, 6

A plane has no vertex of a regular dodecahedron on it,try to find out how many edges at most may the plane intersect the regular dodecahedron?

2022 Czech and Slovak Olympiad III A, 3

Given a scalene acute triangle $ABC$, let M be the midpoints of its side $BC$ and $N$ the midpoint of the arc $BAC$ of its circumcircle. Let $\omega$ be the circle with diameter $BC$ and $D$, $E$ its intersections with the bisector of angle $\angle BAC$. Points $D'$, $E'$ lie on $\omega$ such that $DED'E' $ is a rectangle. Prove that $D'$, $E'$, $M$, $N$ lie on a single circle. [i] (Patrik Bak)[/i]

2002 Estonia Team Selection Test, 4

Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.

2015 China Western Mathematical Olympiad, 5

Let $a,b,c,d$ are lengths of the sides of a convex quadrangle with the area equal to $S$, set $S =\{x_1, x_2,x_3,x_4\}$ consists of permutations $x_i$ of $(a, b, c, d)$. Prove that \[S \leq \frac{1}{2}(x_1x_2+x_3x_4).\]

2004 Tuymaada Olympiad, 2

The incircle of triangle $ABC$ touches its sides $AB$ and $BC$ at points $P$ and $Q.$ The line $PQ$ meets the circumcircle of triangle $ABC$ at points $X$ and $Y.$ Find $\angle XBY$ if $\angle ABC = 90^\circ.$ [i]Proposed by A. Smirnov[/i]

1984 Bundeswettbewerb Mathematik, 4

In a square field of side length $12$ there is a source that contains a system of straight irrigation ditches. This is laid out in such a way that for every point of the field the distance to the next ditch is at most $1$. Here, the source is as a point and are the ditches to be regarded as stretches. It must be verified that the total length of the irrigation ditches is greater than $70$ m. The sketch shows an example of a trench system of the type indicated. [img]https://cdn.artofproblemsolving.com/attachments/6/5/5b51511da468cf14b5823c6acda3c4d2fe8280.png[/img]

2010 Slovenia National Olympiad, 3

Let $ABC$ be an acute triangle with $|AB| > |AC|.$ Let $D$ be a point on the side $AB$, such that the angles $\angle ACD$ and $\angle CBD$ are equal. Let $E$ denote the midpoint of $BD,$ and let $S$ be the circumcenter of the triangle $BCD.$ Prove that the points $A, E, S$ and $C$ lie on the same circle.

2015 Bundeswettbewerb Mathematik Germany, 4

Let $ABC$ be a triangle, such that its incenter $I$ and circumcenter $U$ are distinct. For all points $X$ in the interior of the triangle let $d(X)$ be the sum of distances from $X$ to the three (possibly extended) sides of the triangle. Prove: If two distinct points $P,Q$ in the interior of the triangle $ABC$ satisfy $d(P)=d(Q)$, then $PQ$ is perpendicular to $UI$.

2019 Turkey EGMO TST, 5

Tags: geometry
Let $D$ be the midpoint of $\overline{BC}$ in $\Delta ABC$. Let $P$ be any point on $\overline{AD}$. If the internal angle bisector of $\angle ABP$ and $\angle ACP$ intersect at $Q$. Prove that, if $BQ \perp QC$, then $Q$ lies on $AD$

2022 Sharygin Geometry Olympiad, 20

Tags: geometry
Let $O$, $I$ be the circumcenter and the incenter of $\triangle ABC$; $R$,$r$ be the circumradius and the inradius; $D$ be the touching point of the incircle with $BC$; and $N$ be an arbitrary point of segment $ID$. The perpendicular to $ID$ at $N$ meets the circumcircle of $ABC$ at points $X$ and $Y$ . Let $O_{1}$ be the circumcircle of $\triangle XIY$. Find the product $OO_{1}\cdot IN$.

MathLinks Contest 6th, 5.3

Let $ABC$ be a triangle, and let $ABB_2A_3$, $BCC_3B_1$ and $CAA_1C_2$ be squares constructed outside the triangle. Denote with $S$ the area of the triangle $ABC$ and with s the area of the triangle formed by the intersection of the lines $A_1B_1$, $B_2C_2$ and $C_3A_3$. Prove that $s \le (4 - 2\sqrt3)S$.

2021/2022 Tournament of Towns, P4

Tags: polygon , geometry
A convex $n{}$-gon with $n > 4$ is such that if a diagonal cuts a triangle from it then this triangle is isosceles. Prove that there are at least 2 equal sides among any 4 sides of the $n{}$-gon. [i]Maxim Didin[/i]

2013 AMC 8, 20

A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle? $\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$

KoMaL A Problems 2022/2023, A. 845

Tags: geometry
The incircle of triangle $ABC$ is tangent to sides $BC$, $AC$, and $AB$ at points $D$, $E$ and $F$, respectively. Let $A'$ denote the point of the incircle for which circle $(A'BC)$ is tangent to the incircle. Define points $B'$ and $C'$ similarly. Prove that lines $A'D$, $BE'$, and $CF'$ are concurrent. [i]Proposed by Áron Bán-Szabó, Budapest[/i]

2004 India IMO Training Camp, 1

Let $ABC$ be an acute-angled triangle and $\Gamma$ be a circle with $AB$ as diameter intersecting $BC$ and $CA$ at $F ( \not= B)$ and $E (\not= A)$ respectively. Tangents are drawn at $E$ and $F$ to $\Gamma$ intersect at $P$. Show that the ratio of the circumcentre of triangle $ABC$ to that if $EFP$ is a rational number.