Found problems: 25757
2018 Korea - Final Round, 2
Triangle $ABC$ satisfies $\angle ABC < \angle BCA < \angle CAB < 90^{\circ}$. $O$ is the circumcenter of triangle $ABC$, and $K$ is the reflection of $O$ in $BC$. $D,E$ is the foot of perpendicular line from $K$ to line $AB$, $AC$, respectively. Line $DE$ meets $BC$ at $P$, and a circle with diameter $AK$ meets the circumcircle of triangle $ABC$ at $Q(\neq A)$. If $PQ$ cuts the perpendicular bisector of $BC$ at $S$, then prove that $S$ lies on the circle with diameter $AK$.
2002 Iran MO (3rd Round), 4
$a_{n}$ ($n$ is integer) is a sequence from positive reals that \[a_{n}\geq \frac{a_{n+2}+a_{n+1}+a_{n-1}+a_{n-2}}4\] Prove $a_{n}$ is constant.
2013 Sharygin Geometry Olympiad, 3
Each vertex of a convex polygon is projected to all nonadjacent sidelines. Can it happen that each of these projections lies outside the corresponding side?
2008 Sharygin Geometry Olympiad, 1
(A.Zaslavsky) A convex polygon can be divided into 2008 congruent quadrilaterals. Is it true that this polygon has a center or an axis of symmetry?
2009 Purple Comet Problems, 12
In isosceles triangle $ABC$ sides $AB$ and $BC$ have length $125$ while side $AC$ has length $150$. Point $D$ is the midpoint of side $AC$. $E$ is on side $BC$ so that $BC$ and $DE$ are perpendicular. Similarly, $F$ is on side $AB$ so that $AB$ and $DF$ are perpendicular. Find the area of triangle $DEF$.
2011 Junior Balkan MO, 3
Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.
2019 Stanford Mathematics Tournament, 1
Let $ABCD$ be a quadrilateral with $\angle DAB = \angle ABC = 120^o$. If $AB = 3$, $BC = 2$, and $AD = 4$, what is the length of $CD$?
2008 India Regional Mathematical Olympiad, 1
Let $ ABC$ be an acute angled triangle; let $ D,F$ be the midpoints of $ BC,AB$ respectively. Let the perpendicular from $ F$ to $ AC$ and the perpendicular from $ B$ ti $ BC$ meet in $ N$: Prove that $ ND$ is the circumradius of $ ABC$.
[15 points out of 100 for the 6 problems]
2022 Junior Balkan Team Selection Tests - Romania, P1
Let $M,N$ and $P$ be the midpoints of sides $BC,CA$ and $AB$ respectively, of the acute triangle $ABC.$ Let $A',B'$ and $C'$ be the antipodes of $A,B$ and $C$ in the circumcircle of triangle $ABC.$ On the open segments $MA',NB'$ and $PC'$ we consider points $X,Y$ and $Z$ respectively such that \[\frac{MX}{XA'}=\frac{NY}{YB'}=\frac{PZ}{ZC'}.\][list=a]
[*]Prove that the lines $AX,BY,$ and $CZ$ are concurrent at some point $S.$
[*]Prove that $OS<OG$ where $O$ is the circumcenter and $G$ is the centroid of triangle $ABC.$
[/list]
2014 Israel National Olympiad, 3
Let $ABCDEF$ be a convex hexagon. In the hexagon there is a point $K$, such that $ABCK,DEFK$ are both parallelograms. Prove that the three lines connecting $A,B,C$ to the midpoints of segments $CE,DF,EA$ meet at one point.
2009 IMO Shortlist, 2
Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$
[i]Proposed by Sergei Berlov, Russia [/i]
1951 AMC 12/AHSME, 2
A rectangular field is half as wide as it is long and is completely enclosed by $ x$ yards of fencing. The area in terms of $ x$ is:
$ \textbf{(A)}\ \frac {x^2}{2} \qquad\textbf{(B)}\ 2x^2 \qquad\textbf{(C)}\ \frac {2x^2}{9} \qquad\textbf{(D)}\ \frac {x^2}{18} \qquad\textbf{(E)}\ \frac {x^2}{72}$
2005 Vietnam Team Selection Test, 1
Let $(I),(O)$ be the incircle, and, respectiely, circumcircle of $ABC$. $(I)$ touches $BC,CA,AB$ in $D,E,F$ respectively. We are also given three circles $\omega_a,\omega_b,\omega_c$, tangent to $(I),(O)$ in $D,K$ (for $\omega_a$), $E,M$ (for $\omega_b$), and $F,N$ (for $\omega_c$).
[b]a)[/b] Show that $DK,EM,FN$ are concurrent in a point $P$;
[b]b)[/b] Show that the orthocenter of $DEF$ lies on $OP$.
2022 ABMC, 2022 Dec
[b]p1.[/b] If $A = 0$, $B = 1$, $C = 2$, $...$, $Z = 25$, then what is the sum of $A + B + M+ C$?
[b]p2.[/b] Eric is playing Tetris against Bryan. If Eric wins one-fifth of the games he plays and he plays $15$ games, find the expected number of games Eric will win.
[b]p3.[/b] What is the sum of the measures of the exterior angles of a regular $2023$-gon in degrees?
[b]p4.[/b] If $N$ is a base $10$ digit of $90N3$, what value of $N$ makes this number divisible by $477$?
[b]p5.[/b] What is the rightmost non-zero digit of the decimal expansion of $\frac{1}{2^{2023}}$ ?
[b]p6.[/b] if graphs of $y = \frac54 x + m$ and $y = \frac32 x + n$ intersect at $(16, 27)$, what is the value of $m + n$?
[b]p7.[/b] Bryan is hitting the alphabet keys on his keyboard at random. If the probability he spells out ABMC at least once after hitting $6$ keys is $\frac{a}{b^c}$ , for positive integers $a$, $b$, $c$ where $b$, $c$ are both as small as possible, find $a+b+c$. Note that the letters ABMC must be adjacent for it to count: AEBMCC should not be considered as correctly spelling out ABMC.
[b]p8.[/b] It takes a Daniel twenty minutes to change a light bulb. It takes a Raymond thirty minutes to change a light bulb. It takes a Bryan forty-five minutes to change a light bulb. In the time that it takes two Daniels, three Raymonds, and one and a half Bryans to change $42$ light bulbs, how many light bulbs could half a Raymond change? Assume half a person can work half as productively as a whole person.
[b]p9.[/b] Find the value of $5a + 4b + 3c + 2d + e$ given $a, b, c, d, e$ are real numbers satisfying the following equations: $$a^2 = 2e + 23$$
$$b^2 = 10a - 34$$
$$c^2 = 8b - 23$$
$$d^2 = 6c - 14$$
$$e^2 = 4d - 7.$$
[b]p10.[/b] How many integers between $1$ and $1000$ contain exactly two $1$’s when written in base $2$?
[b]p11.[/b] Joe has lost his $2$ sets of keys. However, he knows that he placed his keys in one of his $12$ mailboxes, each labeled with a different positive integer from $1$ to $12$. Joe plans on opening the $2$ mailbox labeled $1$ to see if any of his keys are there. However, a strong gust of wind blows by, opening mailboxes $11$ and $12$, revealing that they are empty. If Joe decides to open one of the mailboxes labeled $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ , or $10$, the probability that he finds at least one of his sets of keys can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the sum $a + b$. Note that a single mailbox can contain $0$, $1$, or $2$ sets of keys, and the mailboxes his sets of keys were placed in are determined independently at random.
[b]p12.[/b] As we all know, the top scientists have recently proved that the Earth is a flat disc. Bob is standing on Earth. If he takes the shortest path to the edge, he will fall off after walking $1$ meter. If he instead turns $90$ degrees away from the shortest path and walks towards the edge, he will fall off after $3$ meters. Compute the radius of the Earth.
[b]p13.[/b] There are $999$ numbers that are repeating decimals of the form $0.abcabcabc...$ . The sum of all of the numbers of this form that do not have a $1$ or $2$ in their decimal representation can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Find $a + b$.
[b]p14.[/b] An ant is crawling along the edges of a sugar cube. Every second, it travels along an edge to another adjacent vertex randomly, interested in the sugar it notices. Unfortunately, the cube is about to be added to some scalding coffee! In $10$ seconds, it must return to its initial vertex, so it can get off and escape. If the probability the ant will avoid a tragic doom can be expressed as $\frac{a}{3^{10}}$ , where $a$ is a positive integer, find $a$.
Clarification: The ant needs to be on its initial vertex in exactly $10$ seconds, no more or less.
[b]p15.[/b] Raymond’s new My Little Pony: Friendship is Magic Collector’s book arrived in the mail! The book’s pages measure $4\sqrt3$ inches by $12$ inches, and are bound on the longer side. If Raymond keeps one corner in the same plane as the book, what is the total area one of the corners can travel without ripping the page? If the desired area in square inches is $a\pi+b\sqrt{c}$ where $a$, $b$, and $c$ are integers and $c$ is squarefree, find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2002 AMC 10, 24
Riders on a Ferris wheel travel in a circle in a vertical plane. A particular wheel has radius $ 20$ feet and revolves at the constant rate of one revolution per minute. How many seconds does it take a rider to travel from the bottom of the wheel to a point $ 10$ vertical feet above the bottom?
$ \textbf{(A)}\ 5 \qquad
\textbf{(B)}\ 6 \qquad
\textbf{(C)}\ 7.5 \qquad
\textbf{(D)}\ 10 \qquad
\textbf{(E)}\ 15$
2016 NIMO Problems, 3
Convex pentagon $ABCDE$ satisfies $AB \parallel DE$, $BE \parallel CD$, $BC \parallel AE$, $AB = 30$, $BC = 18$, $CD = 17$, and $DE = 20$. Find its area.
[i] Proposed by Michael Tang [/i]
2014 Stanford Mathematics Tournament, 2
In a circle, chord $AB$ has length $5$ and chord $AC$ has length $7$. Arc $AC$ is twice the length of arc $AB$, and both arcs have degree less than $180$. Compute the area of the circle.
2005 Czech And Slovak Olympiad III A, 3
In a trapezoid $ABCD$ with $AB // CD, E$ is the midpoint of $BC$. Prove that if the quadrilaterals $ABED$ and $AECD$ are tangent, then the sides $a = AB, b = BC, c =CD, d = DA$ of the trapezoid satisfy the equalities $a+c = \frac{b}{3} +d$ and $\frac1a +\frac1c = \frac3b$ .
2016 ISI Entrance Examination, 6
Suppose in a triangle $\triangle ABC$, $A$ , $B$ , $C$ are the three angles and $a$ , $b$ , $c$ are the lengths of the sides opposite to the angles respectively. Then prove that if $sin(A-B)= \frac{a}{a+b}\sin A \cos B - \frac{b}{a+b}\sin B \cos A$ then the triangle $\triangle ABC$ is isoscelos.
2010 Saudi Arabia IMO TST, 3
Find all primes $p$ for which $p^2 - p + 1$ is a perfect cube.
1992 Flanders Math Olympiad, 4
Let $A,B,P$ positive reals with $P\le A+B$.
(a) Choose reals $\theta_1,\theta_2$ with $A\cos\theta_1 + B\cos\theta_2=P$ and prove that \[ A\sin\theta_1 + B\sin\theta_2 \le \sqrt{(A+B-P)(A+B+P)} \]
(b) Prove equality is attained when $\theta_1=\theta_2=\arccos\left(\dfrac{P}{A+B}\right)$.
(c) Take $A=\dfrac{1}{2}xy, B=\dfrac{1}{2}wz$ and $P=\dfrac14 \left(x^2+y^2-z^2-w^2\right)$ with $0<x\le y\le x+z+w$, $z,w>0$ and $z^2+w^2<x^2+y^2$.
Show that we can translate (a) and (b) into the following theorem: from all quadrilaterals with (ordered) sidelenghts $(x,y,z,w)$, the cyclical one has the greatest area.
1978 All Soviet Union Mathematical Olympiad, 266
Prove that for every tetrahedron there exist two planes such that the projection areas on those planes ratio is not less than $\sqrt 2$.
1952 AMC 12/AHSME, 24
In the figure, it is given that angle $ C \equal{} 90^{\circ}, \overline{AD} \equal{} \overline{DB}, DE \perp AB, \overline{AB} \equal{} 20$, and $ \overline{AC} \equal{} 12$. The area of quadrilateral $ ADEC$ is:
[asy]unitsize(7);
defaultpen(linewidth(.8pt)+fontsize(10pt));
pair A,B,C,D,E;
A=(0,0); B=(20,0); C=(36/5,48/5); D=(10,0); E=(10,75/10);
draw(A--B--C--cycle); draw(D--E);
label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NE);
draw(rightanglemark(B,D,E,30));[/asy]$ \textbf{(A)}\ 75 \qquad\textbf{(B)}\ 58\frac {1}{2} \qquad\textbf{(C)}\ 48 \qquad\textbf{(D)}\ 37\frac {1}{2} \qquad\textbf{(E)}\ \text{none of these}$
2023 Benelux, 3
Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $N$ denote the second point of intersection of line $AI$ and $\omega$. The line through $I$ perpendicular to $AI$ intersects line $BC$, segment $[AB]$, and segment $[AC]$ at the points $D$, $E$, and $F$, respectively. The circumcircle of triangle $AEF$ meets $\omega$ again at $P$, and lines $PN$ and $BC$ intersect at $Q$. Prove that lines $IQ$ and $DN$ intersect on $\omega$.
1989 Austrian-Polish Competition, 8
$ABC$ is an acute-angled triangle and $P$ a point inside or on the boundary. The feet of the perpendiculars from $P$ to $BC, CA, AB$ are $A', B', C'$ respectively. Show that if $ABC$ is equilateral, then $\frac{AC'+BA'+CB'}{PA'+PB'+PC'}$ is the same for all positions of $P$, but that for any other triangle it is not.