Found problems: 25757
1979 AMC 12/AHSME, 10
If $P_1P_2P_3P_4P_5P_6$ is a regular hexagon whose apothem (distance from the center to midpoint of a side) is $2$, and $Q_i$ is the midpoint of side $P_iP_{i+1}$ for $i=1,2,3,4$, then the area of quadrilateral $Q_1Q_2Q_3Q_4$ is
$\textbf{(A) }6\qquad\textbf{(B) }2\sqrt{6}\qquad\textbf{(C) }\frac{8\sqrt{3}}{3}\qquad\textbf{(D) }3\sqrt{3}\qquad\textbf{(E) }4\sqrt{3}$
2020-2021 Fall SDPC, 5
Let $ABC$ be a triangle with area $1$. Let $D$ be a point on segment $BC$. Let points $E$ and $F$ on $AC$ and $AB$, respectively, satisfy $DE || AB$ and $DF || AC$. Compute, with proof, the area of the quadrilateral with vertices at $E$, $F$, the midpoint of $BD$, and the midpoint of $CD$.
DMM Individual Rounds, 2008
[b]p1.[/b] Joe owns stock. On Monday morning on October $20$th, $2008$, his stocks were worth $\$250,000$. The value of his stocks, for each day from Monday to Friday of that week, increased by $10\%$, increased by $5\%$, decreased by $5\%$, decreased by $15\%$, and decreased by $20\%$, though not necessarily in that order. Given this information, let $A$ be the largest possible value of his stocks on that Friday evening, and let $B$ be the smallest possible value of his stocks on that Friday evening. What is $A - B$?
[b]p2.[/b] What is the smallest positive integer $k$ such that $2k$ is a perfect square and $3k$ is a perfect cube?
[b]p3.[/b] Two competitive ducks decide to have a race in the first quadrant of the $xy$ plane. They both start at the origin, and the race ends when one of the ducks reaches the line $y = \frac12$ . The first duck follows the graph of $y = \frac{x}{3}$ and the second duck follows the graph of $y = \frac{x}{5}$ . If the two ducks move in such a way that their $x$-coordinates are the same at any time during the race, find the ratio of the speed of the first duck to that of the second duck when the race ends.
[b]p4.[/b] There were grammatical errors in this problem as stated during the contest. The problem should have said:
You play a carnival game as follows: The carnival worker has a circular mat of radius 20 cm, and on top of that is a square mat of side length $10$ cm, placed so that the centers of the two mats coincide. The carnival worker also has three disks, one each of radius $1$ cm, $2$ cm, and $3$ cm. You start by paying the worker a modest fee of one dollar, then choosing two of the disks, then throwing the two disks onto the mats, one at a time, so that the center of each disk lies on the circular mat. You win a cash prize if the center of the large disk is on the square AND the large disk touches the small disk, otherwise you just lost the game and you get no money. How much is the cash prize if choosing the two disks randomly and then throwing the disks randomly (i.e. with uniform distribution) will, on average, result in you breaking even?
[b]p5.[/b] Four boys and four girls arrive at the Highball High School Senior Ball without a date. The principal, seeking to rectify the situation, asks each of the boys to rank the four girls in decreasing order of preference as a prom date and asks each girl to do the same for the four boys. None of the boys know any of the girls and vice-versa (otherwise they would have probably found each other before the prom), so all eight teenagers write their rankings randomly. Because the principal lacks the mathematical chops to pair the teenagers together according to their stated preference, he promptly ignores all eight of the lists and randomly pairs each of the boys with a girl. What is the probability that no boy ends up with his third or his fourth choice, and no girl ends up with her third or fourth choice?
[b]p6.[/b] In the diagram below, $ABCDEFGH$ is a rectangular prism, $\angle BAF = 30^o$ and $\angle DAH = 60^o$. What is the cosine of $\angle CEG$?
[img]https://cdn.artofproblemsolving.com/attachments/a/1/1af1a7d5d523884703b9ff95aaf301bcc18140.png[/img]
[b]p7.[/b] Two cows play a game where each has one playing piece, they begin by having the two pieces on opposite vertices of an octahedron, and the two cows take turns moving their piece to an adjacent vertex. The winner is the first player who moves its piece to the vertex occupied by its opponent’s piece. Because cows are not the most intelligent of creatures, they move their pieces randomly. What is the probability that the first cow to move eventually wins?
[b]p8.[/b] Find the last two digits of $$\sum^{2008}_{k=1}k {2008 \choose k}.$$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Iran Team Selection Test, 6
$I$ is the incenter of triangle $ABC$. perpendicular from $I$ to $AI$ meet $AB$ and $AC$ at ${B}'$ and ${C}'$ respectively .
Suppose that ${B}''$ and ${C}''$ are points on half-line $BC$ and $CB$ such that $B{B}''=BA$ and $C{C}''=CA$.
Suppose that the second intersection of circumcircles of $A{B}'{B}''$ and $A{C}'{C}''$ is $T$.
Prove that the circumcenter of $AIT$ is on the $BC$.
2024 Sharygin Geometry Olympiad, 23
A point $P$ moves along a circle $\Omega$. Let $A$ and $B$ be two fixed points of $\Omega$, and $C$ be an arbitrary point inside $\Omega$. The common external tangents to the circumcircles of triangles $APC$ and $BCP$ meet at point $Q$. Prove that all points $Q$ lie on two fixed lines.
2013 Online Math Open Problems, 49
In $\triangle ABC$, $CA=1960\sqrt{2}$, $CB=6720$, and $\angle C = 45^{\circ}$. Let $K$, $L$, $M$ lie on $BC$, $CA$, and $AB$ such that $AK \perp BC$, $BL \perp CA$, and $AM=BM$. Let $N$, $O$, $P$ lie on $KL$, $BA$, and $BL$ such that $AN=KN$, $BO=CO$, and $A$ lies on line $NP$. If $H$ is the orthocenter of $\triangle MOP$, compute $HK^2$.
[hide="Clarifications"]
[list]
[*] Without further qualification, ``$XY$'' denotes line $XY$.[/list][/hide]
[i]Evan Chen[/i]
2019 Belarus Team Selection Test, 6.1
Two circles $\Omega$ and $\Gamma$ are internally tangent at the point $B$. The chord $AC$ of $\Gamma$ is tangent to $\Omega$ at the point $L$, and the segments $AB$ and $BC$ intersect $\Omega$ at the points $M$ and $N$. Let $M_1$ and $N_1$ be the reflections of $M$ and $N$ about the line $BL$; and let $M_2$ and $N_2$ be the reflections of $M$ and $N$ about the line $AC$. The lines $M_1M_2$ and $N_1N_2$ intersect at the point $K$.
Prove that the lines $BK$ and $AC$ are perpendicular.
[i](M. Karpuk)[/i]
2019 Israel Olympic Revenge, G
Let $\omega$ be the $A$-excircle of triangle $ABC$ and $M$ the midpoint of side $BC$. $G$ is the pole of $AM$ w.r.t $\omega$ and $H$ is the midpoint of segment $AG$. Prove that $MH$ is tangent to $\omega$.
2014 ELMO Shortlist, 12
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
2019 Czech-Polish-Slovak Junior Match, 5
Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.
Novosibirsk Oral Geo Oly VII, 2023.6
An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.
2012 District Olympiad, 4
Consider a tetrahedron $ABCD$ in which $AD \perp BC$ and $AC \perp BD$. We denote by $E$ and $F$ the projections of point $B$ on the lines $AD$ and $AC$, respectively. If $M$ and $N$ are the midpoints of the segments $[AB]$ and $[CD]$, respectively, show that $MN \perp EF$
2015 CentroAmerican, Problem 5
Let $ABC$ be a triangle such that $AC=2AB$. Let $D$ be the point of intersection of the angle bisector of the angle $CAB$ with $BC$. Let $F$ be the point of intersection of the line parallel to $AB$ passing through $C$ with the perpendicular line to $AD$ passing through $A$. Prove that $FD$ passes through the midpoint of $AC$.
Math Hour Olympiad, Grades 5-7, 2013.67
[u]Round 1[/u]
[b]p1.[/b] Goldilocks enters the home of the three bears – Papa Bear, Mama Bear, and Baby Bear. Each bear is wearing a different-colored shirt – red, green, or blue. All the bears look the same to Goldilocks, so she cannot otherwise tell them apart.
The bears in the red and blue shirts each make one true statement and one false statement.
The bear in the red shirt says: “I'm Blue's dad. I'm Green's daughter.”
The bear in the blue shirt says: “Red and Green are of opposite gender. Red and Green are my parents.”
Help Goldilocks find out which bear is wearing which shirt.
[b]p2.[/b] The University of Washington is holding a talent competition. The competition has five contests: math, physics, chemistry, biology, and ballroom dancing. Any student can enter into any number of the contests but only once for each one. For example, a student may participate in math, biology, and ballroom.
It turned out that each student participated in an odd number of contests. Also, each contest had an odd number of participants. Was the total number of contestants odd or even?
[b]p3.[/b] The $99$ greatest scientists of Mars and Venus are seated evenly around a circular table. If any scientist sees two colleagues from her own planet sitting an equal number of seats to her left and right, she waves to them. For example, if you are from Mars and the scientists sitting two seats to your left and right are also from Mars, you will wave to them. Prove that at least one of the $99$ scientists will be waving, no matter how they are seated around the table.
[b]p4.[/b] One hundred boys participated in a tennis tournament in which every player played each other player exactly once and there were no ties. Prove that after the tournament, it is possible for the boys to line up for pizza so that each boy defeated the boy standing right behind him in line.
[b]p5.[/b] To celebrate space exploration, the Science Fiction Museum is going to read Star Wars and Star Trek stories for $24$ hours straight. A different story will be read each hour for a total of $12$ Star Wars stories and $12$ Star Trek stories. George and Gene want to listen to exactly $6$ Star Wars and $6$ Star Trek stories. Show that no matter how the readings are scheduled, the friends can find a block of $12$ consecutive hours to listen to the stories together.
[u]Round 2[/u]
[b]p6.[/b] $2013$ people attended Cinderella's ball. Some of the guests were friends with each other. At midnight, the guests started turning into mice. After the first minute, everyone who had no friends at the ball turned into a mouse. After the second minute, everyone who had exactly one friend among the remaining people turned into a mouse. After the third minute, everyone who had two human friends left in the room turned into a mouse, and so on. What is the maximal number of people that could have been left at the ball after $2013$ minutes?
[b]p7.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Hong Kong Team Selection Test, Problem 4
Let $ABCD$ be a quadrilateral inscribed in a circle $\Gamma$ such that $AB=BC=CD$. Let $M$ and $N$ be the midpoints of $AD$ and $AB$ respectively. The line $CM$ meets $\Gamma$ again at $E$. Prove that the tangent at $E$ to $\Gamma$, the line $AD$ and the line $CN$ are concurrent.
1986 All Soviet Union Mathematical Olympiad, 440
Consider all the tetrahedrons $AXBY$, circumscribed around the sphere. Let $A$ and $B$ points be fixed. Prove that the sum of angles in the non-plane quadrangle $AXBY$ doesn't depend on points $X$ and $Y$ .
2000 Abels Math Contest (Norwegian MO), 4
For some values of c, the equation $x^c + y^c = z^c$ can be illustrated geometrically.
For example, the case $c = 2$ can be illustrated by a right-angled triangle. By this we mean that, x, y, z is a solution of the equation $x^2 + y^2 = z^2$ if and only if there exists a right-angled triangle with catheters $x$ and $y$ and hypotenuse $z$.
In this problem we will look at the cases $c = -\frac{1}{2}$ and $c = - 1$.
a) Let $x, y$ and $z$ be the radii of three circles intersecting each other and a line, as shown, in the figure. Show that,
$x^{-\frac{1}{2}}+ y^{-\frac{1}{2}} = z^{-\frac{1}{2}}$
[img]https://cdn.artofproblemsolving.com/attachments/5/7/5315e33e1750a3a49ae11e1b5527311117ce70.png[/img]
b) Draw a geometric figure that illustrates the case in a similar way, $c = - 1$. The figure must be able to be constructed with a compass and a ruler. Describe such a construction and prove that, in the figure, lines $x, y$ and $z$ satisfy $x^{-1}+ y^{-1} = z^{-1}$. (All positive solutions of this equation should be possible values for $x, y$, and $z$ on such a figure, but you don't have to prove that.)
2014 Peru IMO TST, 5
$n$ vertices from a regular polygon with $2n$ sides are chosen and coloured red. The other $n$ vertices are coloured blue. Afterwards, the $\binom{n}{2}$ lengths of the segments formed with all pairs of red vertices are ordered in a non-decreasing sequence, and the same procedure is done with the $\binom{n}{2}$ lengths of the segments formed with all pairs of blue vertices. Prove that both sequences are identical.
2021 Purple Comet Problems, 18
The side lengths of a scalene triangle are roots of the polynomial $$x^3-20x^2+131x-281.3.$$ Find the square of the area of the triangle.
2015 Greece Team Selection Test, 3
Let $ABC$ be an acute triangle with $\displaystyle{AB<AC<BC}$ inscribed in circle $ \displaystyle{c(O,R)}$.The excircle $\displaystyle{(c_A)}$ has center $\displaystyle{I}$ and touches the sides $\displaystyle{BC,AC,AB}$ of the triangle $ABC$ at $\displaystyle{D,E,Z} $ respectively.$ \displaystyle{AI}$ cuts $\displaystyle{(c)}$ at point $M$ and the circumcircle $\displaystyle{(c_1)}$ of triangle $\displaystyle{AZE}$ cuts $\displaystyle{(c)}$ at $K$.The circumcircle $\displaystyle{(c_2)}$ of the triangle $\displaystyle{OKM}$ cuts $\displaystyle{(c_1)} $ at point $N$.Prove that the point of intersection of the lines $AN,KI$ lies on $ \displaystyle{(c)}$.
1985 Bundeswettbewerb Mathematik, 3
From a point in space, $n$ rays are issuing, whereas the angle among any two of these rays is at least $30^{\circ}$. Prove that $n < 59$.
1979 Czech And Slovak Olympiad IIIA, 5
Given a triangle $ABC$ with side sizes $a \ge b \ge c$. Among all pairs of points $X, Y$ on the boundary of triangle $ABC$, which this boundary divides into two parts of equal length, find all such for which the distance is $X Y$ maximum.
2024 AMC 12/AHSME, 15
A triangle in the coordinate plane has vertices $A(\log_21,\log_22)$, $B(\log_23,\log_24)$, and $C(\log_27,\log_28)$. What is the area of $\triangle ABC$?
$
\textbf{(A) }\log_2\frac{\sqrt3}7\qquad
\textbf{(B) }\log_2\frac3{\sqrt7}\qquad
\textbf{(C) }\log_2\frac7{\sqrt3}\qquad
\textbf{(D) }\log_2\frac{11}{\sqrt7}\qquad
\textbf{(E) }\log_2\frac{11}{\sqrt3}\qquad
$
2000 Junior Balkan Team Selection Tests - Moldova, 3
Let $ABC$ be a triangle with $AB = AC$ ¸ $\angle BAC = 100^o$ and $AD, BE$ angle bisectors. Prove that $2AD <BE + EA$
2012 Switzerland - Final Round, 6
Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.