This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2006 IMO Shortlist, 4

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2000 239 Open Mathematical Olympiad, 7

The perpendicular bisectors of the sides AB and BC of a triangle ABC meet the lines BC and AB at the points X and Z, respectively. The angle bisectors of the angles XAC and ZCA intersect at a point B'. Similarly, define two points C' and A'. Prove that the points A', B', C' lie on one line through the incenter I of triangle ABC. [i]Extension:[/i] Prove that the points A', B', C' lie on the line OI, where O is the circumcenter and I is the incenter of triangle ABC. Darij

2022/2023 Tournament of Towns, P3

Tags: geometry
Consider two concentric circles $\Omega$ and $\omega$. Chord $AD$ of the circle $\Omega$ is tangent to $\omega$. Inside the minor disk segment $AD$ of $\Omega$, an arbitrary point $P{}$ is selected. The tangent lines drawn from the point $P{}$ to the circle $\omega$ intersect the major arc $AD$ of the circle $\Omega$ at points $B{}$ and $C{}$. The line segments $BD$ and $AC$ intersect at the point $Q{}$. Prove that the line segment $PQ$ passes through the midpoint of line segment $AD$. [i]Note.[/i] A circle together with its interior is called a disk, and a chord $XY$ of the circle divides the disk into disk segments, a minor disk segment $XY$ (the one of smaller area) and a major disk segment $XY$.

2000 May Olympiad, 2

Let $ABC$ be a right triangle in $A$ , whose leg measures $1$ cm. The bisector of the angle $BAC$ cuts the hypotenuse in $R$, the perpendicular to $AR$ on $R$ , cuts the side $AB$ at its midpoint. Find the measurement of the side $AB$ .

2005 German National Olympiad, 2

According to the estimated number of participants who gave a correct solution, this was the hardest (!) problem from today's paper. So here is this great German killer - be warned! Given a circle k and three pairwisely distinct points A, B, C on this circle. Let h and g be the perpendiculars to the line BC at the points B and C. The perpendicular bisector of the segment AB meets the line h at a point F; the perpendicular bisector of the segment AC meets the line g at a point G. Prove that the product $BF\cdot CG$ is independent from the position of the point A, as long as the points B and C stay fixed. The actual problem behind the problem: Why on hell should the points B and C stay fixed? Darij

1969 Spain Mathematical Olympiad, 7

A convex polygon $A_1A_2 . . .A_n$ of $n$ sides and inscribed in a circle, has its sides that satisfy the inequalities $$A_nA_1 > A_1A_2 > A_2A_3 >...> A_{n-1}A_n$$ Show that its interior angles satisfy the inequalities $$\angle A_1 < \angle A_2 < \angle A_3 < ... < \angle A_{n-1}, \angle A_{n-1} > \angle A_n> \angle A_1.$$

2007 Iran MO (3rd Round), 1

Consider two polygons $ P$ and $ Q$. We want to cut $ P$ into some smaller polygons and put them together in such a way to obtain $ Q$. We can translate the pieces but we can not rotate them or reflect them. We call $ P,Q$ equivalent if and only if we can obtain $ Q$ from $ P$(which is obviously an equivalence relation). [img]http://i3.tinypic.com/4lrb43k.png[/img] a) Let $ P,Q$ be two rectangles with the same area(their sides are not necessarily parallel). Prove that $ P$ and $ Q$ are equivalent. b) Prove that if two triangles are not translation of each other, they are not equivalent. c) Find a necessary and sufficient condition for polygons $ P,Q$ to be equivalent.

1998 USAMO, 2

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.

2019 Junior Balkan Team Selection Tests - Romania, 2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

2003 AMC 10, 3

A solid box is $ 15$ cm by $ 10$ cm by $ 8$ cm. A new solid is formed by removing a cube $ 3$ cm on a side from each corner of this box. What percent of the original volume is removed? $ \textbf{(A)}\ 4.5 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 24$

2024-25 IOQM India, 17

Consider an isosceles triangle $ABC$ with sides $BC = 30, CA = AB = 20$. Let $D$ be the foot of the perpendicular from $A$ to $BC$, and let $M$ be the midpoint of $AD$. Let $PQ$ be a chord of the circumcircle of triangle $ABC$, such that $M$ lies on $PQ$ and $PQ$ is parallel to $BC$. The length of $PQ$ is:

1972 Spain Mathematical Olympiad, 6

Given three circumferences of radii $r$ , $r'$ and $r''$ , each tangent externally to the other two, calculate the radius of the circle inscribed in the triangle whose vertices are their three centers.

the 12th XMO, Problem 1

As shown in the figure, it is known that the quadrilateral $ABCD$ satisfies $\angle ADB = \angle ACB = 90^o$. Suppose $AC$ and $BD$ intersect at point $P$, point $R$ lies on $CD$ and $RP \perp AB$. $M$ and $N$ are the midpoints of $AB$ and $CD$ respectively. Point $K$ is a point on the extension line of $NM$, the circumscribed circles of $\vartriangle DKC$ and $\vartriangle AKB$ intersect at point $S$. Prove that $KS \perp SR$. [img]https://cdn.artofproblemsolving.com/attachments/5/d/fc0a391f8ebcdee792e9b226cbf55a058251a1.png[/img]

1958 Poland - Second Round, 2

Six equal disks are placed on a plane so that their centers lie at the vertices of a regular hexagon with sides equal to the diameter of the disks. How many revolutions will a seventh disk of the same size make when rolling in the same plane externally over the disks before returning to its initial position?

2018 Moldova Team Selection Test, 3

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

1998 Harvard-MIT Mathematics Tournament, 2

A cube with sides 1m in length is filled with water, and has a tiny hole through which the water drains into a cylinder of radius $1\text{ m}$. If the water level in the cube is falling at a rate of $1 \text{ cm/s}$, at what rate is the water level in the cylinder rising?

2012 Indonesia TST, 3

Given a cyclic quadrilateral $ABCD$ with the circumcenter $O$, with $BC$ and $AD$ not parallel. Let $P$ be the intersection of $AC$ and $BD$. Let $E$ be the intersection of the rays $AB$ and $DC$. Let $I$ be the incenter of $EBC$ and the incircle of $EBC$ touches $BC$ at $T_1$. Let $J$ be the excenter of $EAD$ that touches $AD$ and the excircle of $EAD$ that touches $AD$ touches $AD$ at $T_2$. Let $Q$ be the intersection between $IT_1$ and $JT_2$. Prove that $O,P,Q$ are collinear.

2010 Grand Duchy of Lithuania, 4

In the triangle $ABC$ angle $C$ is a right angle. On the side $AC$ point $D$ has been found, and on the segment $BD$ point K has been found such that $\angle ABC = \angle KAD = \angle AKD$. Prove that $BK = 2DC$.

Indonesia MO Shortlist - geometry, g8

Suppose the points $D, E, F$ lie on sides $BC, CA, AB$, respectively, so that $AD, BE, CF$ are angle bisectors. Define $P_1$, $P_2$, $P_3$ respectively as the intersection point of $AD$ with $EF$, $BE$ with $DF$, $CF$ with $DE$ respectively. Prove that $$\frac{AD}{AP_1}+\frac{BE}{BP_2}+\frac{CF}{CP_3} \ge 6$$

2013 Peru IMO TST, 3

Tags: geometry
A point $P$ lies on side $AB$ of a convex quadrilateral $ABCD$. Let $\omega$ be the inscribed circumference of triangle $CPD$ and $I$ the centre of $\omega$. It is known that $\omega$ is tangent to the inscribed circumferences of triangles $APD$ and $BPC$ at points $K$ and $L$ respectively. Let $E$ be the point where the lines $AC$ and $BD$ intersect, and $F$ the point where the lines $AK$ and $BL$ intersect. Prove that the points $E, I, F$ are collinear.

2004 AMC 12/AHSME, 22

Three mutually tangent spheres of radius $ 1$ rest on a horizontal plane. A sphere of radius $ 2$ rests on them. What is the distance from the plane to the top of the larger sphere? $ \textbf{(A)}\ 3 \plus{} \frac {\sqrt {30}}{2} \qquad \textbf{(B)}\ 3 \plus{} \frac {\sqrt {69}}{3} \qquad \textbf{(C)}\ 3 \plus{} \frac {\sqrt {123}}{4}\qquad \textbf{(D)}\ \frac {52}{9}\qquad \textbf{(E)}\ 3 \plus{} 2\sqrt2$

2023 Bulgarian Autumn Math Competition, 8.2

Tags: geometry
A quadrilateral is called $\textit{innovative}$ if its diagonals divide it into $4$ triangles, having the same sets of angle measures. Find the angle measures of an $\textit{innovative}$ quadrilateral, given that one of its angles has measure $13^{\circ}$.

2005 Italy TST, 2

The circle $\Gamma$ and the line $\ell$ have no common points. Let $AB$ be the diameter of $\Gamma$ perpendicular to $\ell$, with $B$ closer to $\ell$ than $A$. An arbitrary point $C\not= A$, $B$ is chosen on $\Gamma$. The line $AC$ intersects $\ell$ at $D$. The line $DE$ is tangent to $\Gamma$ at $E$, with $B$ and $E$ on the same side of $AC$. Let $BE$ intersect $\ell$ at $F$, and let $AF$ intersect $\Gamma$ at $G\not= A$. Let $H$ be the reflection of $G$ in $AB$. Show that $F,C$, and $H$ are collinear.

2012 Kyoto University Entry Examination, 2

Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively. 30 points

Kyiv City MO Juniors 2003+ geometry, 2014.7.41

The sides of triangles $ABC$ and $ACD$ satisfy the following conditions: $AB = AD = 3$ cm, $BC = 7$ cm, $DC = 11$ cm. What values can the side length $AC$ take if it is an integer number of centimeters, is the average in $\Delta ACD$ and the largest in $\Delta ABC$?