This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2021 Argentina National Olympiad, 3

Let $ABC$ be an isosceles right triangle at $A$ with $AB=AC$. Let $M$ and $N$ be on side $BC$, with $M$ between $B$ and $N,$ such that $$BM^2+ NC^2= MN^2.$$ Determine the measure of the angle $\angle MAN.$

2004 Tournament Of Towns, 1

Tags: geometry
Three circles pass through point X. Their intersection points (other than X) are denoted A, B, C. Let A' be the second point of intersection of line AX and the circle circumscribed around triangle BCX, and define similarly points B', C'. Prove that triangles ABC', AB'C, and A'BC are similar.

2004 Czech-Polish-Slovak Match, 5

Points $K,L,M$ on the sides $AB,BC,CA$ respectively of a triangle $ABC$ satisfy $\frac{AK}{KB} = \frac{BL}{LC} = \frac{CM}{MA}$. Show that the triangles $ABC$ and $KLM$ have a common orthocenter if and only if $\triangle ABC$ is equilateral.

2015 NIMO Problems, 1

Tags: geometry
Let $\Omega_1$ and $\Omega_2$ be two circles in the plane. Suppose the common external tangent to $\Omega_1$ and $\Omega_2$ has length $2017$ while their common internal tangent has length $2009$. Find the product of the radii of $\Omega_1$ and $\Omega_2$. [i]Proposed by David Altizio[/i]

2024 Sharygin Geometry Olympiad, 15

The difference of two angles of a triangle is greater than $90^{\circ}$. Prove that the ratio of its circumradius and inradius is greater than $4$.

2017 Harvard-MIT Mathematics Tournament, 10

Tags: geometry
Let $ABC$ be a triangle in the plane with $AB = 13$, $BC = 14$, $AC = 15$. Let $M_n$ denote the smallest possible value of $(AP^n + BP^n + CP^n)^{\frac{1}{n}}$ over all points $P$ in the plane. Find $\lim_{n \to \infty} M_n$.

MBMT Guts Rounds, 2016

[u]Set 1[/u] [b]p1.[/b] Arnold is currently stationed at $(0, 0)$. He wants to buy some milk at $(3, 0)$, and also some cookies at $(0, 4)$, and then return back home at $(0, 0)$. If Arnold is very lazy and wants to minimize his walking, what is the length of the shortest path he can take? [b]p2.[/b] Dilhan selects $1$ shirt out of $3$ choices, $1$ pair of pants out of $4$ choices, and $2$ socks out of $6$ differently-colored socks. How many outfits can Dilhan select? All socks can be worn on both feet, and outfits where the only difference is that the left sock and right sock are switched are considered the same. [b]p3.[/b] What is the sum of the first $100$ odd positive integers? [b]p4.[/b] Find the sum of all the distinct prime factors of $1591$. [b]p5.[/b] Let set $S = \{1, 2, 3, 4, 5, 6\}$. From $S$, four numbers are selected, with replacement. These numbers are assembled to create a $4$-digit number. How many such $4$-digit numbers are multiples of $3$? [u]Set 2[/u] [b]p6.[/b] What is the area of a triangle with vertices at $(0, 0)$, $(7, 2)$, and $(4, 4)$? [b]p7.[/b] Call a number $n$ “warm” if $n - 1$, $n$, and $n + 1$ are all composite. Call a number $m$ “fuzzy” if $m$ may be expressed as the sum of $3$ consecutive positive integers. How many numbers less than or equal to $30$ are warm and fuzzy? [b]p8.[/b] Consider a square and hexagon of equal area. What is the square of the ratio of the side length of the hexagon to the side length of the square? [b]p9.[/b] If $x^2 + y^2 = 361$, $xy = -40$, and $x - y$ is positive, what is $x - y$? [b]p10.[/b] Each face of a cube is to be painted red, orange, yellow, green, blue, or violet, and each color must be used exactly once. Assuming rotations are indistinguishable, how many ways are there to paint the cube? [u]Set 3[/u] [b]p11.[/b] Let $D$ be the midpoint of side $BC$ of triangle $ABC$. Let $P$ be any point on segment $AD$. If $M$ is the maximum possible value of $\frac{[PAB]}{[PAC]}$ and $m$ is the minimum possible value, what is $M - m$? Note: $[PQR]$ denotes the area of triangle $PQR$. [b]p12.[/b] If the product of the positive divisors of the positive integer $n$ is $n^6$, find the sum of the $3$ smallest possible values of $n$. [b]p13.[/b] Find the product of the magnitudes of the complex roots of the equation $(x - 4)^4 +(x - 2)^4 + 14 = 0$. [b]p14.[/b] If $xy - 20x - 16y = 2016$ and $x$ and $y$ are both positive integers, what is the least possible value of $\max (x, y)$? [b]p15.[/b] A peasant is trying to escape from Chyornarus, ruled by the Tsar and his mystical faith healer. The peasant starts at $(0, 0)$ on a $6 \times 6$ unit grid, the Tsar’s palace is at $(3, 3)$, the healer is at $(2, 1)$, and the escape is at $(6, 6)$. If the peasant crosses the Tsar’s palace or the mystical faith healer, he is executed and fails to escape. The peasant’s path can only consist of moves upward and rightward along the gridlines. How many valid paths allow the peasant to escape? PS. You should use hide for answers. Rest sets have been posted [url=https://artofproblemsolving.com/community/c3h2784259p24464954]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

LMT Speed Rounds, 2013

[b]p1.[/b] What is the smallest positive integer divisible by $20$, $12$, and $13$? [b]p2.[/b] Two circles of radius $5$ are placed in the plane such that their centers are $7$ units apart. What is the largest possible distance between a point on one circle and a point on the other? [b]p3.[/b] In a magic square, all the numbers in the rows, columns, and diagonals sum to the same value. How many $2\times 2$ magic squares containing the integers $\{1, 2, 3, 4\}$ are there? [b]p4.[/b] Ethan's sock drawer contains two pairs of white socks and one pair of red socks. Ethan picks two socks at random. What is the probability that he picks two white socks? [b]p5.[/b] The sum of the time on a digital clock is the sum of the digits displayed on the screen. For example, the sum of the time at $10:23$ would be $6$. Assuming the clock is a $12$ hour clock, what is the greatest possible positive difference between the sum of the time at some time and the sum of the time one minute later? [b]p6.[/b] Given the expression $1 \div 2 \div 3 \div 4$, what is the largest possible resulting value if one were to place parentheses $()$ somewhere in the expression? [b]p7.[/b] At a convention, there are many astronomers, astrophysicists, and cosmologists. At $first$, all the astronomers and astrophysicists arrive. At this point, $\frac35$ of the people in the room are astronomers. Then, all the cosmologists come, so now, $30\%$ of the people in the room are astrophysicists. What fraction of the scientists are cosmologists? [b]p8.[/b] At $10:00$ AM, a minuteman starts walking down a $1200$-step stationary escalator at $40$ steps per minute. Halfway down, the escalator starts moving up at a constant speed, while the minuteman continues to walk in the same direction and at the same pace that he was going before. At $10:55$ AM, the minuteman arrives back at the top. At what speed is the escalator going up, in steps per minute? [b]p9.[/b] Given that $x_1 = 57$, $x_2 = 68$, and $x_3 = 32$, let $x_n = x_{n-1} -x_{n-2} +x_{n-3}$ for $n \ge 4$. Find $x_{2013}$. [b]p10.[/b] Two squares are put side by side such that one vertex of the larger one coincides with a vertex of the smaller one. The smallest rectangle that contains both squares is drawn. If the area of the rectangle is $60$ and the area of the smaller square is $24$, what is the length of the diagonal of the rectangle? [b]p11.[/b] On a dield trip, $2$ professors, $4$ girls, and $4$ boys are walking to the forest to gather data on butterflies. They must walk in a line with following restrictions: one adult must be the first person in the line and one adult must be the last person in the line, the boys must be in alphabetical order from front to back, and the girls must also be in alphabetical order from front to back. How many such possible lines are there, if each person has a distinct name? [b]p12.[/b] Flatland is the rectangle with vertices $A, B, C$, and $D$, which are located at $(0, 0)$, $(0, 5)$, $(5, 5)$, and $(5, 0)$, respectively. The citizens put an exact map of Flatland on the rectangular region with vertices $(1, 2)$, $(1, 3)$, $(2, 3)$, and $(2, 2)$ in such a way so that the location of $A$ on the map lies on the point $(1, 2)$ of Flatland, the location of $B$ on the map lies on the point $(1, 3)$ of Flatland, the location of C on the map lies on the point $(2, 3)$ of Flatland, and the location of D on the map lies on the point $(2, 2)$ of Flatland. Which point on the coordinate plane is thesame point on the map as where it actually is on Flatland? [b]p13.[/b] $S$ is a collection of integers such that any integer $x$ that is present in $S$ is present exactly $x$ times. Given that all the integers from $1$ through $22$ inclusive are present in $S$ and no others are, what is the average value of the elements in $S$? [b]p14.[/b] In rectangle $PQRS$ with $PQ < QR$, the angle bisector of $\angle SPQ$ intersects $\overline{SQ}$ at point $T$ and $\overline{QR }$ at $U$. If $PT : TU = 3 : 1$, what is the ratio of the area of triangle $PTS$ to the area of rectangle $PQRS$? [b]p15.[/b] For a function $f(x) = Ax^2 + Bx + C$, $f(A) = f(B)$ and $A + 6 = B$. Find all possible values of $B$. [b]p16.[/b] Let $\alpha$ be the sum of the integers relatively prime to $98$ and less than $98$ and $\beta$ be the sum of the integers not relatively prime to $98$ and less than $98$. What is the value of $\frac{\alpha}{\beta}$ ? [b]p17.[/b] What is the value of the series $\frac{1}{3} + \frac{3}{9} + \frac{6}{27} + \frac{10}{81} + \frac{15}{243} + ...$? [b]p18.[/b] A bug starts at $(0, 0)$ and moves along lattice points restricted to $(i, j)$, where $0 \le i, j \le 2$. Given that the bug moves $1$ unit each second, how many different paths can the bug take such that it ends at $(2, 2)$ after $8$ seconds? [b]p19.[/b] Let $f(n)$ be the sum of the digits of $n$. How many different values of $n < 2013$ are there such that $f(f(f(n))) \ne f(f(n))$ and $f(f(f(n))) < 10$? [b]p20.[/b] Let $A$ and $B$ be points such that $\overline{AB} = 14$ and let $\omega_1$ and $\omega_2$ be circles centered at $A$ and $B$ with radii $13$ and $15$, respectively. Let $C$ be a point on $\omega_1$ and $D$ be a point on $\omega_2$ such that $\overline{CD}$ is a common external tangent to $\omega_1$ and $\omega_2$. Let $P$ be the intersection point of the two circles that is closer to $\overline{CD}$. If $M$ is the midpoint of $\overline{CD}$, what is the length of segment $\overline{PM}$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 Moldova National Olympiad, 8.3

The circle $C_1$ of center $O$ and the circle $C_2$ intersect at points $A$ and $B$, so that point $O$ lies on circle $C_2$. The lines $d$ and $e$ are tangent at point $A$ to the circles $C_1$ and $C_2$ respectively. If the line $e$ intersects the circle $C_1$ at point $D$, prove that the lines $BD$ and $d$ are parallel.

2008 Germany Team Selection Test, 2

The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

IV Soros Olympiad 1997 - 98 (Russia), 9.6

Tags: rhombus , geometry
A rhombus is circumscribed around a square with side $1997$. Find its diagonals if it is known that they are equal to different integers.

2023 Estonia Team Selection Test, 4

Tags: geometry
A convex quadrilateral $ABCD$ has $\angle BAC = \angle ADC$. Let $M{}$ be the midpoint of the diagonal $AC$. The side $AD$ contains a point $E$ such that $ABME$ is a parallelogram. Let $N{}$ be the midpoint of the line segment $AE{}$. Prove that the line $AC$ touches the circumcircle of the triangle $DMN$ at point $M{}$.

1982 Spain Mathematical Olympiad, 5

Construct a square knowing the sum of the diagonal and the side.

2016 Nigerian Senior MO Round 2, Problem 9

$ABCD$ is a parallelogram, line $DF$ is drawn bisecting $BC$ at $E$ and meeting $AB$ (extended) at $F$ from vertex $C$. Line $CH$ is drawn bisecting side $AD$ at $G$ and meeting $AB$ (extended) at $H$. Lines $DF$ and $CH$ intersect at $I$. If the area of parallelogram $ABCD$ is $x$, find the area of triangle $HFI$ in terms of $x$.

1938 Moscow Mathematical Olympiad, 041

Given the base, height and the difference between the angles at the base of a triangle, construct the triangle.

2020 IMO Shortlist, G2

Tags: geometry
Consider the convex quadrilateral $ABCD$. The point $P$ is in the interior of $ABCD$. The following ratio equalities hold: \[\angle PAD:\angle PBA:\angle DPA=1:2:3=\angle CBP:\angle BAP:\angle BPC\] Prove that the following three lines meet in a point: the internal bisectors of angles $\angle ADP$ and $\angle PCB$ and the perpendicular bisector of segment $AB$. [i]Proposed by Dominik Burek, Poland[/i]

2023 Stanford Mathematics Tournament, R6

Tags: geometry , algebra
[b]p16.[/b] When not writing power rounds, Eric likes to climb trees. The strength in his arms as a function of time is $s(t) = t^3 - 3t^2$. His climbing velocity as a function of the strength in his arms is $v(s) = s^5 + 9s^4 + 19s^3 - 9s^2 - 20s$. At how many (possibly negative) points in time is Eric stationary? [b]p17[/b]. Consider a triangle $\vartriangle ABC$ with angles $\angle ACB = 60^o$, $\angle ABC = 45^o$. The circumcircle around $\vartriangle ABH$, where $H$ is the orthocenter of $\vartriangle ABC$, intersects $BC$ for a second time in point $P$, and the center of that circumcircle is $O_c$. The line $PH$ intersects $AC$ in point $Q$, and $N$ is center of the circumcircle around $\vartriangle AQP$. Find $\angle NO_cP$. [b]p18.[/b] If $x, y$ are positive real numbers and $xy^3 = \frac{16}{9}$ , what is the minimum possible value of $3x + y$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 239 Open Mathematical Olympiad, 4

Tags: geometry
In convex quadrilateral $ABCD$, where $AB=AD$, on $BD$ point $K$ is chosen. On $KC$ point $L$ is such that $\bigtriangleup BAD \sim \bigtriangleup BKL$. Line parallel to $DL$ and passes through $K$, intersect $CD$ at $P$. Prove that $\angle APK = \angle LBC$. @below edited

2024 Indonesia TST, 1

Tags: geometry
Let $ABC$ be an acute triangle. Let $D$ be a point on side $AB$ and $E$ be a point on side $AC$ such that lines $BC$ and $DE$ are parallel. Let $X$ be an interior point of $BCED$. Suppose rays $DX$ and $EX$ meet side $BC$ at points $P$ and $Q$, respectively, such that both $P$ and $Q$ lie between $B$ and $C$. Suppose that the circumcircles of triangles $BQX$ and $CPX$ intersect at a point $Y \neq X$. Prove that the points $A, X$, and $Y$ are collinear.

2013 Online Math Open Problems, 16

Let $S_1$ and $S_2$ be two circles intersecting at points $A$ and $B$. Let $C$ and $D$ be points on $S_1$ and $S_2$ respectively such that line $CD$ is tangent to both circles and $A$ is closer to line $CD$ than $B$. If $\angle BCA = 52^\circ$ and $\angle BDA = 32^\circ$, determine the degree measure of $\angle CBD$. [i]Ray Li[/i]

2009 All-Russian Olympiad Regional Round, 10.4

Circles $\omega_1$ and $\omega_2$ touch externally at the point $O$. Points $A$ and $B$ on the circle $\omega_1$ and points $C$ and $D$ on the circle $\omega_2$ are such that $AC$ and $BD$ are common external tangents to circles. Line $AO$ intersects segment $CD$ at point $M$ and straight line $CO$ intersexts $\omega_1$ again at point $N$. Prove that the points $B$, $M$ and $N$ lie on the same straight line.

1990 China Team Selection Test, 2

Tags: geometry
Finitely many polygons are placed in the plane. If for any two polygons of them, there exists a line through origin $O$ that cuts them both, then these polygons are called "properly placed". Find the least $m \in \mathbb{N}$, such that for any group of properly placed polygons, $m$ lines can drawn through $O$ and every polygon is cut by at least one of these $m$ lines.

2024 BMT, 7

Tags: geometry
In parallelogram $ABCD,$ $E$ is a point on $\overline{AD}$ such that $\overline{CE} \perp \overline{AD},$ $F$ is a point on $\overline{CD}$ such that $\overline{AF} \perp \overline{CD},$ and $G$ is a point on $\overline{BC}$ such that $\overline{AG} \perp \overline{BC}.$ Let $H$ be a point on $\overline{GF}$ such that $\overline{AH} \perp \overline{GF},$ and let $J$ be the intersection of lines $EF$ and $BC.$ Given that $AH=8, AE=6,$ and $EF=4,$ compute $CJ.$

2016 Grand Duchy of Lithuania, 3

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $D, E$ and $F$ be points on line segments $BC, CA$ and $AB$, respectively, such that $BF = BE$ and such that $ED$ is the angle bisector of $\angle BEC$. Prove that $BD = EF$ if and only if $AF = EC$.

2023 Flanders Math Olympiad, 3

The vertices of a regular $4$-gon, $6$-gon and $12$-goncan be brought together in one point to form a complete angle of $360^o$ (see figure). [center][img]https://cdn.artofproblemsolving.com/attachments/b/1/e9245179b7e0f5acb98b226bdc6db87fd72ad5.png[/img] [/center] Determine all triples $a, b, c \in N$ with $a < b < c$ for which the angles of a regular $a$-gon, $b$-gon and $c$-gon together also form $360^o$ .