Found problems: 25757
2009 ITAMO, 3
A natural number $k$ is said $n$-squared if by colouring the squares of a $2n \times k$ chessboard, in any manner, with $n$ different colours, we can find $4$ separate unit squares of the same colour, the centers of which are vertices of a rectangle having sides parallel to the sides of the board. Determine, in function of $n$, the smallest natural $k$ that is $n$-squared.
2020 Durer Math Competition Finals, 5
The hexagon $ABCDEF$ has all angles equal . We know that four consecutive sides of the hexagon have lengths $7, 6, 3$ and $5$ in this order. What is the sum of the lengths of the two remaining sides?
2005 Postal Coaching, 12
Let $ABC$ be a triangle with vertices at lattice points. Suppose one of its sides in $\sqrt{n}$, where $n$ is square-free. Prove that $\frac{R}{r}$ is irraational . The symbols have usual meanings.
2015 Iran Team Selection Test, 6
$ABCD$ is a circumscribed and inscribed quadrilateral. $O$ is the circumcenter of the quadrilateral. $E,F$ and $S$ are the intersections of $AB,CD$ , $AD,BC$ and $AC,BD$ respectively. $E'$ and $F'$ are points on $AD$ and $AB$ such that $A\hat{E}E'=E'\hat{E}D$ and $A\hat{F}F'=F'\hat{F}B$. $X$ and $Y$ are points on $OE'$ and $OF'$ such that $\frac{XA}{XD}=\frac{EA}{ED}$ and $\frac{YA}{YB}=\frac{FA}{FB}$. $M$ is the midpoint of arc $BD$ of $(O)$ which contains $A$.
Prove that the circumcircles of triangles $OXY$ and $OAM$ are coaxal with the circle with diameter $OS$.
2019 MOAA, 5
Let $ABC$ be a triangle with $AB = AC = 10$ and $BC = 12$. Define $\ell_A$ as the line through $A$ perpendicular to $\overline{AB}$. Similarly, $\ell_B$ is the line through $B$ perpendicular to $\overline{BC}$ and $\ell_C$ is the line through $C$ perpendicular to $\overline{CA}$. These three lines $\ell_A, \ell_B, \ell_C$ form a triangle with perimeter $m/n$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
2018 Denmark MO - Mohr Contest, 2
The figure shows a large circle with radius $2$ m and four small circles with radii $1$ m. It is to be painted using the three shown colours. What is the cost of painting the figure?
[img]https://1.bp.blogspot.com/-oWnh8uhyTIo/XzP30gZueKI/AAAAAAAAMUY/GlC3puNU_6g6YRf6hPpbQW8IE8IqMP3ugCLcBGAsYHQ/s0/2018%2BMohr%2Bp2.png[/img]
2003 May Olympiad, 2
Let $ABCD$ be a rectangle of sides $AB = 4$ and $BC = 3$. The perpendicular on the diagonal $BD$ drawn from $A$ cuts $BD$ at point $H$. We call $M$ the midpoint of $BH$ and $N$ the midpoint of $CD$. Calculate the measure of the segment $MN$.
Mid-Michigan MO, Grades 10-12, 2023
[b]p1.[/b] There are $16$ students in a class. Each month the teacher divides the class into two groups. What is the minimum number of months that must pass for any two students to be in different groups in at least one of the months?
[b]p2.[/b] Find all functions $f(x)$ defined for all real $x$ that satisfy the equation $2f(x) + f(1 - x) = x^2$.
[b]p3.[/b] Arrange the digits from $1$ to $9$ in a row (each digit only once) so that every two consecutive digits form a two-digit number that is divisible by $7$ or $13$.
[b]p4.[/b] Prove that $\cos 1^o$ is irrational.
[b]p5.[/b] Consider $2n$ distinct positive Integers $a_1,a_2,...,a_{2n}$ not exceeding $n^2$ ($n>2$). Prove that some three of the differences $a_i- a_j$ are equal .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Belarusian National Olympiad, 11.7
Line $AL$ is an angle bisector in the triangle $ABC$ ($L \in BC$), and $\omega$ is its circumcircle. Chords $X_1X_2$ and $Y_1Y_2$ pass through $L$ such that points $X_1,Y_1$ and $A$ lie in the same half-plane with respect to $BC$. Lines $X_1Y_2$ and $Y_1X_2$ intersect side $BC$ in points $Z_1$ and $Z_2$ respectively.
Prove that $\angle BAZ_1=\angle CAZ_2$.
2016 Vietnam Team Selection Test, 3
Let $ABC$ be triangle with circumcircle $(O)$ of fixed $BC$, $AB \ne AC$ and $BC$ not a diameter. Let $I$ be the incenter of the triangle $ABC$ and $D = AI \cap BC, E = BI \cap CA, F = CI \cap AB$. The circle passing through $D$ and tangent to $OA$ cuts for second time $(O)$ at $G$ ($G \ne A$). $GE, GF$ cut $(O)$ also at $M, N$ respectively.
a) Let $H = BM \cap CN$. Prove that $AH$ goes through a fixed point.
b) Suppose $BE, CF$ cut $(O)$ also at $L, K$ respectively and $AH \cap KL = P$. On $EF$ take $Q$ for $QP = QI$. Let $J$ be a point of the circimcircle of triangle $IBC$ so that $IJ \perp IQ$. Prove that the midpoint of $IJ$ belongs to a fixed circle.
PEN H Problems, 13
Find all pairs $(x,y)$ of positive integers that satisfy the equation \[y^{2}=x^{3}+16.\]
1978 Polish MO Finals, 1
A ray of light reflects from the rays of a given angle. A ray that enters the vertex of the angle is absorbed. Prove that there is a natural number $n$ such that any ray can reflect at most $n$ times
2019 India IMO Training Camp, P1
In an acute angled triangle $ABC$ with $AB < AC$, let $I$ denote the incenter and $M$ the midpoint of side $BC$. The line through $A$ perpendicular to $AI$ intersects the tangent from $M$ to the incircle (different from line $BC$) at a point $P$> Show that $AI$ is tangent to the circumcircle of triangle $MIP$.
[i]Proposed by Tejaswi Navilarekallu[/i]
2021 Azerbaijan IMO TST, 1
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$.
Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
2009 Harvard-MIT Mathematics Tournament, 10
A [i]kite[/i] is a quadrilateral whose diagonals are perpendicular. Let kite $ABCD$ be such that $\angle B = \angle D = 90^\circ$. Let $M$ and $N$ be the points of tangency of the incircle of $ABCD$ to $AB$ and $BC$ respectively. Let $\omega$ be the circle centered at $C$ and tangent to $AB$ and $AD$. Construct another kite $AB^\prime C^\prime D^\prime$ that is similar to $ABCD$ and whose incircle is $\omega$. Let $N^\prime$ be the point of tangency of $B^\prime C^\prime$ to $\omega$. If $MN^\prime \parallel AC$, then what is the ratio of $AB:BC$?
2003 Federal Competition For Advanced Students, Part 2, 2
Let $a, b, c$ be nonzero real numbers for which there exist $\alpha, \beta, \gamma \in\{-1, 1\}$ with $\alpha a + \beta b + \gamma c = 0$. What is the smallest possible value of
\[\left( \frac{a^3+b^3+c^3}{abc}\right)^2 ?\]
2019 Saudi Arabia BMO TST, 2
Let $ABCD$ is a trapezoid with $\angle A = \angle B = 90^o$ and let $E$ is a point lying on side $CD$. Let the circle $\omega$ is inscribed to triangle $ABE$ and tangents sides $AB, AE$ and $BE$ at points $P, F$ and $K$ respectively. Let $KF$ intersects segments $BC$ and $AD$ at points $M$ and $N$ respectively, as well as $PM$ and $PN$ intersect $\omega$ at points $H$ and $T$ respectively. Prove that $PH = PT$.
1991 Chile National Olympiad, 2
If a polygon inscribed in a circle is equiangular and has an odd number of sides, prove that it is regular.
2010 Contests, 2
Acute triangle $ABP$, where $AB > BP$, has altitudes $BH$, $PQ$, and $AS$. Let $C$ denote the intersection of lines $QS$ and $AP$, and let $L$ denote the intersection of lines $HS$ and $BC$. If $HS = SL$ and $HL$ is perpendicular to $BC$, find the value of $\frac{SL}{SC}$.
2016 Taiwan TST Round 3, 1
Let $ABC$ be an acute-angled triangle, with $\angle B \neq \angle C$ . Let $M$ be the midpoint of side $BC$, and $E,F$ be the feet of the altitude from $B,C$ respectively. Denote by $K,L$ the midpoints of segments $ME,MF$, respectively. Suppose $T$ is a point on the line $KL$ such that $AT//BC$.
Prove that $TA=TM$ .
2020 China Team Selection Test, 2
Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.
2014 Bulgaria National Olympiad, 1
Let $k$ be a given circle and $A$ is a fixed point outside $k$. $BC$ is a diameter of $k$. Find the locus of the orthocentre of $\triangle ABC$ when $BC$ varies.
[i]Proposed by T. Vitanov, E. Kolev[/i]
1980 Yugoslav Team Selection Test, Problem 1
Circles $k$ and $l$ intersect at points $P$ and $Q$. Let $A$ be an arbitrary point on $k$ distinct from $P$ and $Q$. Lines $AP$ and $AQ$ meet $l$ again at $B$ and $C$. Prove that the altitude from $A$ in triangle $ABC$ passes through a point that does not depend on $A$.
1992 Bulgaria National Olympiad, Problem 3
Let $m$ and $n$ are fixed natural numbers and $Oxy$ is a coordinate system in the plane. Find the total count of all possible situations of $n+m-1$ points $P_1(x_1,y_1),P_2(x_2,y_2),\ldots,P_{n+m-1}(x_{n+m-1},y_{n+m-1})$ in the plane for which the following conditions are satisfied:
(i) The numbers $x_i$ and $y_i~(i=1,2,\ldots,n+m-1)$ are integers and $1\le x_i\le n,1\le y_i\le m$.
(ii) Every one of the numbers $1,2,\ldots,n$ can be found in the sequence $x_1,x_2,\ldots,x_{n+m-1}$ and every one of the numbers $1,2,\ldots,m$ can be found in the sequence $y_1,y_2,\ldots,y_{n+m-1}$.
(iii) For every $i=1,2,\ldots,n+m-2$ the line $P_iP_{i+1}$ is parallel to one of the coordinate axes. [i](Ivan Gochev, Hristo Minchev)[/i]
2021 Adygea Teachers' Geometry Olympiad, 2
In triangle $ABC$, the incircle touches the side $AC$ at point $B_1$ and one excircle is touching the same side at point $B_2$. It is known that the segments $BB_1$ and $BB_2$ are equal. Is it true that $\vartriangle ABC$ is isosceles?