This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 Oral Moscow Geometry Olympiad, 5

Given triangle $ABC$. Point $O_1$ is the center of the $BCDE$ rectangle, constructed so that the side $DE$ of the rectangle contains the vertex $A$ of the triangle. Points $O_2$ and $O_3$ are the centers of rectangles constructed in the same way on the sides $AC$ and $AB$, respectively. Prove that lines $AO_1, BO_2$ and $CO_3$ meet at one point.

2018 Puerto Rico Team Selection Test, 5

Tags: geometry , square
In the square shown in the figure, find the value of $x$. [img]https://cdn.artofproblemsolving.com/attachments/0/1/4659d5afa5b409d9264924735297d1188b0be3.png[/img]

2003 Junior Balkan Team Selection Tests - Moldova, 7

The triangle $ABC$ is isosceles with $AB=BC$. The point F on the side $[BC]$ and the point $D$ on the side $AC$ are the feets of the the internals bisectors drawn from $A$ and altitude drawn from $B$ respectively so that $AF=2BD$. Fine the measure of the angle $ABC$.

2014 Contests, 2

Outside the square $ABCD$, the rhombus $BCMN$ is constructed with angle $BCM$ obtuse . Let $P$ be the intersection point of the lines $BM$ and $AN$ . Prove that $DM \perp CP$ and the triangle $DPM$ is right isosceles .

2022 Saudi Arabia JBMO TST, 2

Tags: geometry
Let $BB'$, $CC'$ be the altitudes of an acute-angled triangle $ABC$. Two circles passing through $A$ and $C'$ are tangent to $BC$ at points $P$ and $Q$. Prove that $A, B', P, Q$ are concyclic.

2008 Iran MO (2nd Round), 2

Let $I_a$ be the $A$-excenter of $\Delta ABC$ and the $A$-excircle of $\Delta ABC$ be tangent to the lines $AB,AC$ at $B',C'$, respectively. $ I_aB,I_aC$ meet $B'C'$ at $P,Q$, respectively. $M$ is the meet point of $BQ,CP$. Prove that the length of the perpendicular from $M$ to $BC$ is equal to $r$ where $r$ is the radius of incircle of $\Delta ABC$.

1967 IMO Longlists, 9

Circle $k$ and its diameter $AB$ are given. Find the locus of the centers of circles inscribed in the triangles having one vertex on $AB$ and two other vertices on $k.$

1976 AMC 12/AHSME, 18

[asy] //size(100);//local size(200); real r1=2; pair O=(0,0), D=(.5,.5*sqrt(3)), C=(D.x+.5*3,D.y), B, B_prime=endpoint(arc(D, 3, 0,-2)); B=B_prime; path c1=circle(O, r1); pair C=midpoint(D--B_prime); path arc2=arc(B_prime, 6/2, 158.25,250); draw(c1); draw(O--D); draw(D--C); draw(C--B_prime); pair A=beginpoint(arc2); draw(B_prime--A); //dot(O^^D^^C^^A); //dot(B_prime); label("\scriptsize{$O$}",O,.6dir(D--O)); label("\scriptsize{$C$}",C,.5dir(-55)); label("\scriptsize{$D$}", D,.2NW); //label("\scriptsize{$B$}",B,S); label("\scriptsize{$B$}", B_prime, .5*dir(D--B_prime)); label("\scriptsize{$A$}",A,.5dir(NE)); label("\tiny{2}", O--D, .45*LeftSide); label("\tiny{3}", D--C, .45*LeftSide); label("\tiny{6}", B_prime--A, .45*RightSide); label("\tiny{3}", waypoint(C--B_prime,.1), .45*N); //Credit to Klaus-Anton for the diagram[/asy] In the adjoining figure, $AB$ is tangent at $A$ to the circle with center $O$; point $D$ is interior to the circle; and $DB$ intersects the circle at $C$. If $BC=DC=3$, $OD=2$, and $AB=6$, then the radius of the circle is $\textbf{(A) }3+\sqrt{3}\qquad\textbf{(B) }15/\pi\qquad\textbf{(C) }9/2\qquad\textbf{(D) }2\sqrt{6}\qquad \textbf{(E) }\sqrt{22}$

2014 USA Team Selection Test, 1

Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.) [i]Robert Simson et al.[/i]

Denmark (Mohr) - geometry, 2001.3

Tags: geometry , square , min
In the square $ABCD$ of side length $2$ the point $M$ is the midpoint of $BC$ and $P$ a point on $DC$. Determine the smallest value of $AP+PM$. [img]https://1.bp.blogspot.com/-WD8WXIE6DK4/XzcC9GYsa6I/AAAAAAAAMXg/vl2OrbAdChEYrRpemYmj6DiOrdOSqj_IgCLcBGAsYHQ/s178/2001%2BMohr%2Bp3.png[/img]

V Soros Olympiad 1998 - 99 (Russia), 10.10

A chord $AB$ is drawn in a circle. The line $\ell$ is parallel to $AB$ and does not intersect the circle. Let $C$ be a certain point on the circle (points $C$ located on one side of $AB$ are considered). Lines $CA$ and $CB$ intersect $\ell$ at points $D$ and $E$. Prove that there exists a fixed point $F$ of the plane, not lying on line $\ell$ , such that $\angle DFE$ is constant.

2003 Alexandru Myller, 3

$ ABC $ and $ ADE $ are two triangles with $ \angle ABC=\angle ADE =90^{\circ } $ and such that $ AB=AD. $ The projection of $ B $ on $ AC $ is $ F, $ and the projection of $ D $ on $ AE $ is $ G. $ Prove that $ B,F,E $ are collinear if and only if $ D,G,C $ are collinear.

KoMaL A Problems 2020/2021, A. 802

Let $P$ be a given regular $100$-gon. Prove that if we take the union of two polygons that are congruent to $P,$ the ratio of the perimeter and area of the resulting shape cannot be more than the ratio of the perimeter and area of $P.$

2020 IOM, 6

Tags: ddit , trivial , geometry
In convex pentagon $ABCDE$ points $A_1$, $B_1$, $C_1$, $D_1$, $E_1$ are intersections of pairs of diagonals $(BD, CE)$, $(CE, DA)$, $(DA, EB)$, $(EB, AC)$ and $(AC, BD)$ respectively. Prove that if four of quadrilaterals $AB_{1}A_{1}B$, $BC_{1}B_{1}C$, $CD_{1}C_{1}D$, $DE_{1}D_{1}E$ and $EA_{1}E_{1}A$ are cyclic then the fifth one is also cyclic.

2012 Israel National Olympiad, 6

Tags: geometry
Let $A,B,C,O$ be points in the plane such that angles $\angle AOB,\angle BOC, \angle COA$ are obtuse. On $OA,OB,OC$ points $X,Y,Z$ respectively are chosen, such that $OX=OY=OZ$. On segments $OX,OY,OZ$ points $K,L,M$ respectively are chosen. The lines $AL$ and $BK$ intersect at point $R$, which isn't on $XY$. The segment $XY$ intersects $AL,BK$ at points $R_1,R_2$. The lines $BM$ and $CL$ intersect at point $P$, which isn't on $YZ$. The segment $YZ$ intersects $BM,CL$ at points $P_1,P_2$. The lines $CK$ and $AM$ intersect at point $Q$, which isn't on $ZX$. The segment $ZX$ intersects $CK,AM$ at points $Q_1,Q_2$. Suppose that $PP_1=PP_2$ and $QQ_1=QQ_2$. Prove that $RR_1=RR_2$.

2020-21 IOQM India, 9

Let A$BC$ be a triangle with $AB = 5, AC = 4, BC = 6$. The internal angle bisector of $C$ intersects the side $AB$ at $D$. Points $M$ and $N$ are taken on sides $BC$ and $AC$, respectively, such that $DM\parallel AC$ and $DN \parallel BC$. If $(MN)^2 =\frac{p}{q}$ where $p$ and $q$ are relatively prime positive integers then what is the sum of the digits of $|p - q|$?

2019 New Zealand MO, 3

Tags: geometry
In triangle $ABC$, points $D$ and $E$ lie on the interior of segments $AB$ and $AC$, respectively,such that $AD = 1$, $DB = 2$, $BC = 4$, $CE = 2$ and $EA = 3$. Let $DE$ intersect $BC$ at $F$. Determine the length of $CF$.

1990 IMO Longlists, 90

Let $P$ be a variable point on the circumference of a quarter-circle with radii $OA, OB$ and $\angle AOB = 90^\circ$. H is the projection of $P$ on $OA$. Find the locus of the incenter of the right-angled triangle $HPO.$

2007 iTest Tournament of Champions, 4

Tags: incenter , geometry
In triangle $ABC$, points $A'$, $B'$, and $C'$ are chosen with $A'$ on segment $AB$, $B'$ on segment $BC$, and $C'$ on segment $CA$ so that triangle $A'B'C'$ is directly similar to $ABC$. The incenters of $ABC$ and $A'B'C'$ are $I$ and $I'$ respectively. Lines $BC$, $A'C'$, and $II'$ are parallel. If $AB=100$ and $AC=120$, what is the length of $BC$?

2010 German National Olympiad, 6

Let $A,B,C,D,E,F,G$ and $H$ be eight pairwise distinct points on the surface of a sphere. The quadruples $(A,B,C,D), (A,B,F,E),(B,C,G,F),(C,D,H,G)$ and $(D,A,E,H)$ of points are coplanar. Prove that the quadruple $(E,F,G,H)$ is coplanar aswell.

2001 Pan African, 3

Let $S_1$ be a semicircle with centre $O$ and diameter $AB$.A circle $C_1$ with centre $P$ is drawn, tangent to $S_1$, and tangent to $AB$ at $O$. A semicircle $S_2$ is drawn, with centre $Q$ on $AB$, tangent to $S_1$ and to $C_1$. A circle $C_2$ with centre $R$ is drawn, internally tangent to $S_1$ and externally tangent to $S_2$ and $C_1$. Prove that $OPRQ$ is a rectangle.

2002 China Western Mathematical Olympiad, 2

Let $ O$ be the circumcenter of acute triangle $ ABC$. Point $ P$ is in the interior of triangle $ AOB$. Let $ D,E,F$ be the projections of $ P$ on the sides $ BC,CA,AB$, respectively. Prove that the parallelogram consisting of $ FE$ and $ FD$ as its adjacent sides lies inside triangle $ ABC$.

2009 Ukraine Team Selection Test, 1

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2012 Harvard-MIT Mathematics Tournament, 5

Tags: geometry
A mouse lives in a circular cage with completely reflective walls. At the edge of this cage, a small flashlight with vertex on the circle whose beam forms an angle of $15^o$ is centered at an angle of $37.5^o$ away from the center. The mouse will die in the dark. What fraction of the total area of the cage can keep the mouse alive? [img]https://cdn.artofproblemsolving.com/attachments/1/c/283276058b7b2c85a95976743c5188ee8ee008.png[/img]

Durer Math Competition CD 1st Round - geometry, 2011.D5

Is it true that in every convex polygon $3$ adjacent vertices can be selected such that their circumcirscribed circle can cover the entire polygon?