This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020 CMIMC Geometry, 7

Tags: geometry
In triangle $ABC$, points $D$, $E$, and $F$ are on sides $BC$, $CA$, and $AB$ respectively, such that $BF = BD = CD = CE = 5$ and $AE - AF = 3$. Let $I$ be the incenter of $ABC$. The circumcircles of $BFI$ and $CEI$ intersect at $X \neq I$. Find the length of $DX$.

2023 Novosibirsk Oral Olympiad in Geometry, 6

Tags: angle , geometry
Two quarter-circles touch as shown. Find the angle $x$. [img]https://cdn.artofproblemsolving.com/attachments/b/4/e70d5d69e46d6d40368f143cb83cf10b7d6d98.png[/img]

2022 Iranian Geometry Olympiad, 1

Tags: geometry
Given is a circle $\omega$ and a line $\ell$ tangent to $\omega$ at $Y$. Point $X$ lies on $\ell$ to the left of $Y$. The tangent to $\omega$, perpendicular to $\ell$ meets $\ell$ at $A$ and touches $\omega$ at $D$. Let $B$ a point on $\ell$, to the right of $Y$, such that $AX=BY$. The tangent from $B$ to $\omega$ touches the circle at $C$. Prove that $\angle XDA= \angle YDC$. Note: This is not the official wording (it was just a diagram without any description).

Ukraine Correspondence MO - geometry, 2009.7

Let $ABCDE$ be a convex pentagon such that $AE\parallel BC$ and $\angle ADE = \angle BDC$. The diagonals $AC$ and $BE$ intersect at point $F$. Prove that $\angle CBD= \angle ADF$.

1985 IberoAmerican, 3

Given an acute triangle $ABC$, let $D$, $E$ and $F$ be points in the lines $BC$, $AC$ and $AB$ respectively. If the lines $AD$, $BE$ and $CF$ pass through $O$ the centre of the circumcircle of the triangle $ABC$, whose radius is $R$, show that: \[\frac{1}{AD}\plus{}\frac{1}{BE}\plus{}\frac{1}{CF}\equal{}\frac{2}{R}\]

DMM Team Rounds, 2008

[b]p1.[/b] $ABCD$ is a convex quadrilateral such that $AB = 20$, $BC = 24$, $CD = 7$, $DA = 15$, and $\angle DAB$ is a right angle. What is the area of $ABCD$? [b]p2.[/b] A triangular number is one that can be written in the form $1 + 2 +...·+n$ for some positive number $n$. $ 1$ is clearly both triangular and square. What is the next largest number that is both triangular and square? [b]p3.[/b] Find the last (i.e. rightmost) three digits of $9^{2008}$. [b]p4.[/b] When expressing numbers in a base $b \ge 11$, you use letters to represent digits greater than $9$. For example, $A$ represents $10$ and $B$ represents $11$, so that the number $110$ in base $10$ is $A0$ in base $11$. What is the smallest positive integer that has four digits when written in base $10$, has at least one letter in its base $12$ representation, and no letters in its base $16$ representation? [b]p5.[/b] A fly starts from the point $(0, 16)$, then flies straight to the point $(8, 0)$, then straight to the point $(0, -4)$, then straight to the point $(-2, 0)$, and so on, spiraling to the origin, each time intersecting the coordinate axes at a point half as far from the origin as its previous intercept. If the fly flies at a constant speed of $2$ units per second, how many seconds will it take the fly to reach the origin? [b]p6.[/b] A line segment is divided into two unequal lengths so that the ratio of the length of the short part to the length of the long part is the same as the ratio of the length of the long part to the length of the whole line segment. Let $D$ be this ratio. Compute $$D^{-1} + D^{[D^{-1}+D^{(D^{-1}+D^2)}]}.$$ [b]p7.[/b] Let $f(x) = 4x + 2$. Find the ordered pair of integers $(P, Q)$ such that their greatest common divisor is $1, P$ is positive, and for any two real numbers $a$ and $b$, the sentence: “$P a + Qb \ge 0$” is true if and only if the following sentence is true: “For all real numbers x, if $|f(x) - 6| < b$, then $|x - 1| < a$.” [b]p8.[/b] Call a rectangle “simple” if all four of its vertices have integers as both of their coordinates and has one vertex at the origin. How many simple rectangles are there whose area is less than or equal to $6$? [b]p9.[/b] A square is divided into eight congruent triangles by the diagonals and the perpendicular bisectors of its sides. How many ways are there to color the triangles red and blue if two ways that are reflections or rotations of each other are considered the same? [b]p10.[/b] In chess, a knight can move by jumping to any square whose center is $\sqrt5$ units away from the center of the square that it is currently on. For example, a knight on the square marked by the horse in the diagram below can move to any of the squares marked with an “X” and to no other squares. How many ways can a knight on the square marked by the horse in the diagram move to the square with a circle in exactly four moves? [img]https://cdn.artofproblemsolving.com/attachments/d/9/2ef9939642362182af12089f95836d4e294725.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 QEDMO 5th, 2

Let $ ABCD$ be a (not self-intersecting) quadrilateral satisfying $ \measuredangle DAB \equal{} \measuredangle BCD\neq 90^{\circ}$. Let $ X$ and $ Y$ be the orthogonal projections of the point $ D$ on the lines $ AB$ and $ BC$, and let $ Z$ and $ W$ be the orthogonal projections of the point $ B$ on the lines $ CD$ and $ DA$. Establish the following facts: [b]a)[/b] The quadrilateral $ XYZW$ is an isosceles trapezoid such that $ XY\parallel ZW$. [b]b)[/b] Let $ M$ be the midpoint of the segment $ AC$. Then, the lines $ XZ$ and $ YW$ pass through the point $ M$. [b]c)[/b] Let $ N$ be the midpoint of the segment $ BD$, and let $ X^{\prime}$, $ Y^{\prime}$, $ Z^{\prime}$, $ W^{\prime}$ be the midpoints of the segments $ AB$, $ BC$, $ CD$, $ DA$. Then, the point $ M$ lies on the circumcircles of the triangles $ W^{\prime}X^{\prime}N$ and $ Y^{\prime}Z^{\prime}N$. [hide="Notice"][i]Notice.[/i] This problem has been discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=172417 .[/hide]

2013 China Team Selection Test, 2

Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.

2015 Sharygin Geometry Olympiad, 3

In triangle $ABC$ we have $AB = BC, \angle B = 20^o$. Point $M$ on $AC$ is such that $AM : MC = 1 : 2$, point $H$ is the projection of $C$ to $BM$. Find angle $AHB$. (M. Yevdokimov)

2019 Stanford Mathematics Tournament, 4

Tags: geometry
Let $\omega_1$ and $\omega_2$ be two circles intersecting at points $P$ and $Q$. The tangent line closer to $Q$ touches $\omega_1$ and $\omega_2$ at $M$ and $N$ respectively. If $P Q = 3$, $QN = 2$, and $MN = P N$, what is $QM^2$?

2006 Czech-Polish-Slovak Match, 1

Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.

2000 Saint Petersburg Mathematical Olympiad, 9.4

On a Cartesian plane 101 planes are drawn and all points of intersection are labeled. Is it possible, that for every line, 50 of the points have positive coordinates and 50 of the points have negative coordinates [I]Proposed by S. Ivanov[/i]

2009 Vietnam National Olympiad, 3

Let $ A$, $ B$ be two fixed points and $ C$ is a variable point on the plane such that $ \angle ACB\equal{}\alpha$ (constant) ($ 0^{\circ}\le \alpha\le 180^{\circ}$). Let $ D$, $ E$, $ F$ be the projections of the incenter $ I$ of triangle $ ABC$ to its sides $ BC$, $ CA$, $ AB$, respectively. Denoted by $ M$, $ N$ the intersections of $ AI$, $ BI$ with $ EF$, respectively. Prove that the length of the segment $ MN$ is constant and the circumcircle of triangle $ DMN$ always passes through a fixed point.

Champions Tournament Seniors - geometry, 2007.3

Given a triangle $ABC$. Point $M$ moves along the side $BA$ and point $N$ moves along the side $AC$ beyond point $C$ such that $BM=CN$. Find the geometric locus of the centers of the circles circumscribed around the triangle $AMN$.

2015 USAMTS Problems, 2

A net for a polyhedron is cut along an edge to give two [b]pieces[/b]. For example, we may cut a cube net along the red edge to form two pieces as shown. [asy] size(5.5cm); draw((1,0)--(1,4)--(2,4)--(2,0)--cycle); draw((1,1)--(2,1)); draw((1,2)--(2,2)); draw((1,3)--(2,3)); draw((0,1)--(3,1)--(3,2)--(0,2)--cycle); draw((2,1)--(2,2),red+linewidth(1.5)); draw((3.5,2)--(5,2)); filldraw((4.25,2.2)--(5,2)--(4.25,1.8)--cycle,black); draw((6,1.5)--(10,1.5)--(10,2.5)--(6,2.5)--cycle); draw((7,1.5)--(7,2.5)); draw((8,1.5)--(8,2.5)); draw((9,1.5)--(9,2.5)); draw((7,2.5)--(7,3.5)--(8,3.5)--(8,2.5)--cycle); draw((11,1.5)--(11,2.5)--(12,2.5)--(12,1.5)--cycle); [/asy] Are there two distinct polyhedra for which this process may result in the same two pairs of pieces? If you think the answer is no, prove that no pair of polyhedra can result in the same two pairs of pieces. If you think the answer is yes, provide an example; a clear example will suffice as a proof.

2011 India National Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\Gamma.$ Let $E,F,G,H$ be the midpoints of arcs $AB,BC,CD,AD$ of $\Gamma,$ respectively. Suppose that $AC\cdot BD=EG\cdot FH.$ Show that $AC,BD,EG,FH$ are all concurrent.

1985 IMO Longlists, 93

The sphere inscribed in tetrahedron $ABCD$ touches the sides $ABD$ and $DBC$ at points $K$ and $M$, respectively. Prove that $\angle AKB = \angle DMC$.

May Olympiad L1 - geometry, 2012.3

Tags: geometry , paper , area
From a paper quadrilateral like the one in the figure, you have to cut out a new quadrilateral whose area is equal to half the area of the original quadrilateral.You can only bend one or more times and cut by some of the lines of the folds. Describe the folds and cuts and justify that the area is half. [img]https://2.bp.blogspot.com/-btvafZuTvlk/XNY8nba0BmI/AAAAAAAAKLo/nm4c21A1hAIK3PKleEwt6F9cd6zv4XffwCK4BGAYYCw/s400/may%2B2012%2Bl1.png[/img]

2019 MOAA, 1

Tags: geometry , team
Jeffrey stands on a straight horizontal bridge that measures $20000$ meters across. He wishes to place a pole vertically at the center of the bridge so that the sum of the distances from the top of the pole to the two ends of the bridge is $20001$ meters. To the nearest meter, how long of a pole does Jeffrey need?

1972 IMO Longlists, 10

Tags: geometry
Given five points in the plane, no three of which are collinear, prove that there can be found at least two obtuse-angled triangles with vertices at the given points. Construct an example in which there are exactly two such triangles.

2022 JBMO Shortlist, G4

Given is an equilateral triangle $ABC$ and an arbitrary point, denoted by $E$, on the line segment $BC$. Let $l$ be the line through $A$ parallel to $BC$ and let $K$ be the point on $l$ such that $KE$ is perpendicular to $BC$. The circle with centre $K$ and radius $KE$ intersects the sides $AB$ and $AC$ at $M$ and $N$, respectively. The line perpendicular to $AB$ at $M$ intersects $l$ at $D$, and the line perpendicular to $AC$ at $N$ intersects $l$ at $F$. Show that the point of intersection of the angle bisectors of angles $MDA$ and $NFA$ belongs to the line $KE$.

1996 Polish MO Finals, 2

Let $P$ be a point inside a triangle $ABC$ such that $\angle PBC = \angle PCA < \angle PAB$. The line $PB$ meets the circumcircle of triangle $ABC$ at a point $E$ (apart from $B$). The line $CE$ meets the circumcircle of triangle $APE$ at a point $F$ (apart from $E$). Show that the ratio $\frac{\left|APEF\right|}{\left|ABP\right|}$ does not depend on the point $P$, where the notation $\left|P_1P_2...P_n\right|$ stands for the area of an arbitrary polygon $P_1P_2...P_n$.

2019 LIMIT Category A, Problem 9

$ABCD$ is a quadrilateral on the complex plane whose four vertices satisfy $z^4+z^3+z^2+z+1=0$. Then $ABCD$ is a $\textbf{(A)}~\text{Rectangle}$ $\textbf{(B)}~\text{Rhombus}$ $\textbf{(C)}~\text{Isosceles Trapezium}$ $\textbf{(D)}~\text{Square}$

2007 Harvard-MIT Mathematics Tournament, 3

Tags: geometry
Circles $\omega_1$, $\omega_2$, and $\omega_3$ are centered at $M$, $N$, and $O$, respectively. The points of tangency between $\omega_2$ and $\omega_3$, $\omega_3$ and $\omega_1$, and $\omega_1$ and $\omega_2$ are tangent at $A$, $B$, and $C$, respectively. Line $MO$ intersects $\omega_3$ and $\omega_1$ again at $P$ and $Q$ respectively, and line $AP$ intersects $\omega_2$ again at $R$. Given that $ABC$ is an equilateral triangle of side length $1$, compute the area of $PQR$.

1984 IMO Longlists, 62

From a point $P$ exterior to a circle $K$, two rays are drawn intersecting $K$ in the respective pairs of points $A, A'$ and $B,B' $. For any other pair of points $C, C'$ on $K$, let $D$ be the point of intersection of the circumcircles of triangles $PAC$ and $PB'C'$ other than point $P$. Similarly, let $D'$ be the point of intersection of the circumcircles of triangles $PA'C'$ and $PBC$ other than point $P$. Prove that the points $P, D$, and $D'$ are collinear.