Found problems: 25757
1992 IMO Longlists, 50
Let $N$ be a point inside the triangle $ABC$. Through the midpoints of the segments $AN, BN$, and $CN$ the lines parallel to the opposite sides of $\triangle ABC$ are constructed. Let $AN, BN$, and $CN$ be the intersection points of these lines. If $N$ is the orthocenter of the triangle $ABC$, prove that the nine-point circles of $\triangle ABC$ and $\triangle A_NB_NC_N$ coincide.
[hide="Remark."]Remark. The statement of the original problem was that the nine-point circles of the triangles $A_NB_NC_N$ and $A_MB_MC_M$ coincide, where $N$ and $M$ are the orthocenter and the centroid of $ABC$. This statement is false.[/hide]
2002 All-Russian Olympiad Regional Round, 8.4
Given a triangle $ABC$ with pairwise distinct sides. on his on the sides, regular triangles $ABC_1$, $BCA_1$, $CAB_1$. are constructed externally. Prove that triangle $A_1B_1C_1$ cannot be regular.
2008 Romania National Olympiad, 1
A tetrahedron has the side lengths positive integers, such that the product of any two opposite sides equals 6. Prove that the tetrahedron is a regular triangular pyramid in which the lateral sides form an angle of at least 30 degrees with the base plane.
2011 Singapore MO Open, 1
In the acute-angled non-isosceles triangle $ABC$, $O$ is its circumcenter, $H$ is its orthocenter and $AB>AC$. Let $Q$ be a point on $AC$ such that the extension of $HQ$ meets the extension of $BC$ at the point $P$. Suppose $BD=DP$, where $D$ is the foot of the perpendicular from $A$ onto $BC$. Prove that $\angle ODQ=90^{\circ}$.
2006 Moldova MO 11-12, 4
Let $ABCDE$ be a right quadrangular pyramid with vertex $E$ and height $EO$. Point $S$ divides this height in the ratio $ES: SO=m$. In which ratio does the plane $(ABC)$ divide the lateral area of the pyramid.
Indonesia MO Shortlist - geometry, g9
It is known that $ABCD$ is a parallelogram. The point $E$ is taken so that $BCED$ is a cyclic quadrilateral. Let $\ell$ be a line that passes through $A$, intersects the segment $DC$ at point $F$ and intersects the extension of the line $BC$ at $G$. Given $EF = EG = EC$. Prove that $\ell$ is the bisector of the angle $\angle BAD$.
2010 NZMOC Camp Selection Problems, 4
A line drawn from the vertex $A$ of the equilateral triangle $ABC$ meets the side $BC$ at $D$ and the circumcircle of the triangle at point $Q$. Prove that $\frac{1}{QD} = \frac{1}{QB} + \frac{1}{QC}$.
2006 Cuba MO, 6
Two concentric circles of radii $1$ and $2$ have centere the point $O$. The vertex $A$ of the equilateral triangle $ABC$ lies at the largest circle, while the midpoint of side $BC$ lies on the smaller circle. If$ B$,$O$ and $C$ are not collinear, what measure can the angle $\angle BOC$ have?
2006 China Western Mathematical Olympiad, 3
In $\triangle PBC$, $\angle PBC=60^{o}$, the tangent at point $P$ to the circumcircle$g$ of $\triangle PBC$ intersects with line $CB$ at $A$. Points $D$ and $E$ lie on the line segment $PA$ and $g$ respectively, satisfying $\angle DBE=90^{o}$, $PD=PE$. $BE$ and $PC$ meet at $F$. It is known that lines $AF,BP,CD$ are concurrent.
a) Prove that $BF$ bisect $\angle PBC$
b) Find $\tan \angle PCB$
2005 ISI B.Stat Entrance Exam, 1
Let $a,b$ and $c$ be the sides of a right angled triangle. Let $\theta$ be the smallest angle of this triangle. If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are also the sides of a right angled triangle then show that $\sin\theta=\frac{\sqrt{5}-1}{2}$
Ukrainian From Tasks to Tasks - geometry, 2016.13
Let $ABC$ be an isosceles acute triangle ($AB = BC$). On the side $BC$ we mark a point $P$, such that $\angle PAC = 45^o$, and $Q$ is the point of intersection of the perpendicular bisector of the segment $AP$ with the side $AB$. Prove that $PQ \perp BC$.
1995 Baltic Way, 19
The following construction is used for training astronauts:
A circle $C_2$ of radius $2R$ rolls along the inside of another, fixed circle $C_1$ of radius $nR$, where $n$ is an integer greater than $2$. The astronaut is fastened to a third circle $C_3$ of radius $R$ which rolls along the inside of circle $C_2$ in such a way that the touching point of the circles $C_2$ and $C_3$ remains at maximum distance from the touching point of the circles $C_1$ and $C_2$ at all times. How many revolutions (relative to the ground) does the astronaut perform together with the circle $C_3$ while the circle $C_2$ completes one full lap around the inside of circle $C_1$?
2018 Romanian Master of Mathematics Shortlist, G1
Let $ABC$ be a triangle and let $H$ be the orthogonal projection of $A$ on the line $BC$. Let $K$ be a point on the segment $AH$ such that $AH = 3 KH$. Let $O$ be the circumcenter of triangle $ABC$ and let $M$ and $N$ be the midpoints of sides $AC$ and $AB$ respectively. The lines $KO$ and $MN$ meet at a point $Z$ and the perpendicular at $Z$ to $OK$ meets lines $AB, AC$ at $X$ and $Y$ respectively. Show that $\angle XKY = \angle CKB$.
[i]Italy[/i]
2010 All-Russian Olympiad, 4
In a acute triangle $ABC$, the median, $AM$, is longer than side $AB$. Prove that you can cut triangle $ABC$ into $3$ parts out of which you can construct a rhombus.
2020 MBMT, 20
Sam colors each tile in a 4 by 4 grid white or black. A coloring is called [i]rotationally symmetric[/i] if the grid can be rotated 90, 180, or 270 degrees to achieve the same pattern. Two colorings are called [i]rotationally distinct[/i] if neither can be rotated to match the other. How many rotationally distinct ways are there for Sam to color the grid such that the colorings are [i]not[/i] rotationally symmetric?
[i]Proposed by Gabriel Wu[/i]
2024 Brazil Cono Sur TST, 2
Inside an angle $\angle BOC$ there are three disjoint circles: $k_1,k_2$ and $k_3$, which are, each one, tangent to its sides $BO$ and $OC$. Let $r_1, r_2$ and $r_3$, respectively, be the radii of these circles, with $r_1<r_2<r_3$. The circles $k_1$ and $k_3$ are tangent to the side $OB$ at $A$ and $B$, respectively, and $k_2$ is tangent to the side $OC$ at $C$. Let $K=AC\cap k_1,L=AC\cap k_2,M=BC\cap k_2$ and $N=BC\cap k_3$. Besides that, let $P=AM\cap BK,Q=AM\cap BL,R=AN\cap BK$ and $S=AN\cap BL$. If the intersections of $CP,CQ,CR$ and $CS$ with $AB$ are $X,Y,Z$ and $T$, respectively, prove that $XZ = YT$.
2003 AIME Problems, 10
Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ$. Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ$. Find the number of degrees in $\angle CMB$.
2007 Stars of Mathematics, 3
Let $ ABC $ be a triangle and $ A_1,B_1,C_1 $ the projections of $ A,B,C $ on their opposite sides. Let $ A_2,A_3 $ be the projection of $ A_1 $ on $ AB, $ respectively on $ AC. B_2,B_3,C_2,C_3 $ are defined analogously. Moreover, $ A_4 $ is the intersection of $ B_2B_3 $ with $ C_2C_3; B_4, $ the intersection of $C_2C_3 $ with $ A_2A_3; C_4, $ the intersection of $ A_2A_3 $ with $ B_2B_3. $
Show that $ AA_4,BB_4 $ and $ CC_4 $ are concurrent.
2020 CCA Math Bonanza, L1.4
Let $ABC$ be a triangle with $AB=3$, $BC=4$, and $CA=5$. Points $A_1$, $B_1$, and $C_1$ are chosen on its incircle. Compute the maximum possible sum of the areas of triangles $A_1BC$, $AB_1C$, and $ABC_1$.
[i]2020 CCA Math Bonanza Lightning Round #1.4[/i]
1950 AMC 12/AHSME, 8
If the radius of a circle is increased $100\%$, the area is increased:
$\textbf{(A)}\ 100\% \qquad
\textbf{(B)}\ 200\% \qquad
\textbf{(C)}\ 300\% \qquad
\textbf{(D)}\ 400\% \qquad
\textbf{(E)}\ \text{By none of these}$
2020 Poland - Second Round, 4.
Let $ABCDEF$ be a such convex hexagon that
$$ AB=CD=EF\; \text{and} \; BC=DE=.FA$$
Prove that if $\sphericalangle FAB + \sphericalangle ABC=\sphericalangle FAB + \sphericalangle EFA = 240^{\circ}$, then $\sphericalangle FAB+\sphericalangle CDE=240^{\circ}$.
2005 Oral Moscow Geometry Olympiad, 2
A parallelogram of $ABCD$ is given. Line parallel to $AB$ intersects the bisectors of angles $A$ and $C$ at points $P$ and $Q$, respectively. Prove that the angles $ADP$ and $ABQ$ are equal.
(A. Hakobyan)
Kvant 2019, M2564
Let $ABC$ be an acute-angled triangle with $AC<BC.$ A circle passes through $A$ and $B$ and crosses the segments $AC$ and $BC$ again at $A_1$ and $B_1$ respectively. The circumcircles of $A_1B_1C$ and $ABC$ meet each other at points $P$ and $C.$ The segments $AB_1$ and $A_1B$ intersect at $S.$ Let $Q$ and $R$ be the reflections of $S$ in the lines $CA$ and $CB$ respectively. Prove that the points $P,$ $Q,$ $R,$ and $C$ are concyclic.
2019 ASDAN Math Tournament, 10
Regular hexagon $ABCDEF$ has side length $1$. Given that $P$ is a point inside $ABCDEF$, compute the minimum of $AP \sqrt3 + CP + DP + EP\sqrt3$.
2023 Assam Mathematics Olympiad, 17
If in $\bigtriangleup ABC$, $AD$ is the altitude and $AE$ is the diameter of the circumcircle through $A$, then prove that $AB\cdot AC = AD \cdot AE$. Use this result to show that if $ABCD$ is a cyclic quadrilateral then show that $AC \cdot (AB \cdot BC + CD \cdot DA) = BD\cdot (DA\cdot AB + BC \cdot CD)$.