Found problems: 25757
2014 Hanoi Open Mathematics Competitions, 7
Let two circles $C_1,C_2$ with different radius be externally tangent at a point $T$.
Let $A$ be on $C_1$ and $B$ be on $C_2$, with $A,B \ne T$ such that $\angle ATB = 90^o$.
(a) Prove that all such lines $AB$ are concurrent.
(b) Find the locus of the midpoints of all such segments $AB$.
2007 AMC 12/AHSME, 20
The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \plus{} d,y \equal{} bx \plus{} c$ and $ y \equal{} bx \plus{} d$ has area $ 18$. The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \minus{} d,y \equal{} bx \plus{} c,$ and $ y \equal{} bx \minus{} d$ has area $ 72.$ Given that $ a,b,c,$ and $ d$ are positive integers, what is the smallest possible value of $ a \plus{} b \plus{} c \plus{} d$?
$ \textbf{(A)}\ 13 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17$
2023 Princeton University Math Competition, 2
2. Let $\Gamma_{1}$ and $\Gamma_{2}$ be externally tangent circles with radii $\frac{1}{2}$ and $\frac{1}{8}$, respectively. The line $\ell$ is a common external tangent to $\Gamma_{1}$ and $\Gamma_{2}$. For $n \geq 3$, we define $\Gamma_{n}$ as the smallest circle tangent to $\Gamma_{n-1}, \Gamma_{n-2}$, and $\ell$. The radius of $\Gamma_{10}$ can be expressed as $\frac{a}{b}$ where $a, b$ are relatively prime positive integers. Find $a+b$.
1998 Tournament Of Towns, 1
Pinocchio claims that he can take some non-right-angled triangles , all of which are similar to one another and some of which may be congruent to one another, and put them together to form a rectangle. Is Pinocchio lying?
(A Fedotov)
2000 Junior Balkan Team Selection Tests - Moldova, 7
Let a triangle $ABC, A_1$ be the midpoint of the segment $[BC], B_1 \in (AC)$ ¸and $C_1 \in (AB)$ such that $[A_1B_1$ is the bisector of the angle $AA_1C$ and $A_1C_1$ is perpendicular to $AB$. Show that the lines $AA_1, BB_1$ and $CC_1$ are concurrent if and only if $ \angle BAC = 90^o$
2005 National High School Mathematics League, 11
One side of a square in on line $y=2x-17$, and two other points are on parabola $y=x^2$, then the minumum value of the area of the square is________.
1997 Bulgaria National Olympiad, 2
Let $M$ be the centroid of $\Delta ABC$
Prove the inequality
$\sin \angle CAM + \sin\angle CBM \le \frac{2}{\sqrt 3}$
(a) if the circumscribed circle of $\Delta AMC$ is tangent to the line $AB$
(b) for any $\Delta ABC$
2009 Brazil National Olympiad, 2
Let $ ABC$ be a triangle and $ O$ its circumcenter. Lines $ AB$ and $ AC$ meet the circumcircle of $ OBC$ again in $ B_1\neq B$ and $ C_1 \neq C$, respectively, lines $ BA$ and $ BC$ meet the circumcircle of $ OAC$ again in $ A_2\neq A$ and $ C_2\neq C$, respectively, and lines $ CA$ and $ CB$ meet the circumcircle of $ OAB$ in $ A_3\neq A$ and $ B_3\neq B$, respectively. Prove that lines $ A_2A_3$, $ B_1B_3$ and $ C_1C_2$ have a common point.
2016 ASMT, 7
A circle intersects the $y$-axis at two points $(0, a)$ and $(0, b)$ and is tangent to the line $x+100y = 100$ at $(100, 0)$. Compute the sum of all possible values of $ab - a - b$.
2013 Iran MO (2nd Round), 3
Let $M$ be the midpoint of (the smaller) arc $BC$ in circumcircle of triangle $ABC$. Suppose that the altitude drawn from $A$ intersects the circle at $N$. Draw two lines through circumcenter $O$ of $ABC$ paralell to $MB$ and $MC$, which intersect $AB$ and $AC$ at $K$ and $L$, respectively. Prove that $NK=NL$.
2011 Iran Team Selection Test, 7
Find the locus of points $P$ in an equilateral triangle $ABC$ for which the square root of the distance of $P$ to one of the sides is equal to the sum of the square root of the distance of $P$ to the two other sides.
2023 Sharygin Geometry Olympiad, 14
Suppose that a closed oriented polygonal line $\mathcal{L}$ in the plane does not pass through a point $O$, and is symmetric with respect to $O$. Prove that the winding number of $\mathcal{L}$ around $O$ is odd.
The winding number of $\mathcal{L}$ around $O$ is defined to be the following sum of the oriented angles divided by $2\pi$: $$\deg_O\mathcal{L} := \dfrac{\angle A_1OA_2+\angle A_2OA_3+\dots+\angle A_{n-1}OA_n+\angle A_nOA_1}{2\pi}.$$
1953 AMC 12/AHSME, 46
Instead of walking along two adjacent sides of a rectangular field, a boy took a shortcut along the diagonal of the field and saved a distance equal to $ \frac{1}{2}$ the longer side. The ratio of the shorter side of the rectangle to the longer side was:
$ \textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{2}{3} \qquad\textbf{(C)}\ \frac{1}{4} \qquad\textbf{(D)}\ \frac{3}{4} \qquad\textbf{(E)}\ \frac{2}{5}$
2011 Sharygin Geometry Olympiad, 1
The diagonals of a trapezoid are perpendicular, and its altitude is equal to the medial line. Prove that this trapezoid is isosceles
2010 ELMO Shortlist, 1
Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent.
[i]Carl Lian.[/i]
1995 IMO Shortlist, 4
An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that
\[ \angle AA_1A_2 \equal{} \angle AA_2A_1 \equal{} \angle BB_1B_2 \equal{} \angle BB_2B_1 \equal{} \angle CC_1C_2 \equal{} \angle CC_2C_1.\]
The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.
1953 Moscow Mathematical Olympiad, 252
Given triangle $\vartriangle A_1A_2A_3$ and a straight line $\ell$ outside it. The angles between the lines $A_1A_2$ and $A_2A_3, A_1A_2$ and $A_2A_3, A_2A_3$ and $A_3A_1$ are equal to $a_3, a_1$ and $a_2$, respectively. The straight lines are drawn through points $A_1, A_2, A_3$ forming with $\ell$ angles of $\pi -a_1, \pi -a_2, \pi -a_3$, respectively. All angles are counted in the same direction from $\ell$ . Prove that these new lines meet at one point.
2019 Thailand TSTST, 3
Let $ABC$ be an acute triangle with $AX, BY$ and $CZ$ as its altitudes.
$\bullet$ Line $\ell_A$, which is parallel to $YZ$, intersects $CA$ at $A_1$ between $C$ and $A$, and intersects $AB$ at $A_2$ between $A$ and $B$.
$\bullet$ Line $\ell_B$, which is parallel to $ZX$, intersects $AB$ at $B_1$ between $A$ and $B$, and intersects $BC$ at $B_2$ between $B$ and $C$.
$\bullet$ Line $\ell_C$, which is parallel to $XY$ , intersects $BC$ at $C_1$ between $B$ and $C$, and intersects $CA$ at $C_2$ between $C$ and $A$.
Suppose that the perimeters of the triangles $\vartriangle AA_1A_2$, $\vartriangle BB_1B_2$ and $\vartriangle CC_1C_2$ are equal to $CA+AB,AB +BC$ and $BC +CA$, respectively. Prove that $\ell_A, \ell_B$ and $\ell_C$ are concurrent.
2005 Manhattan Mathematical Olympiad, 4
Here is a problem given at the mathematical test at some school:
[i]The hypotenuse of the right triangle is 12 inches. The height (distance from the opposite vertex to the hypotenuse) is 12 inches. Find the area of the triangle[/i]
Everybody in the class got the answer $42$ square inches, except for the two best students. Can you explain why the two best students could not get the same answer as the majority?
2017 Peru Iberoamerican Team Selection Test, P5
Let $ABCD$ be a trapezoid of bases $AD$ and $BC$ , with $AD> BC$, whose diagonals are cut at point $E$. Let $P$ and $Q$ be the feet of the perpendicular drawn from $E$ on the sides $AD$ and $BC$, respectively, with $P$ and $Q$ in segments $AD$ and $BC,$ respectively. Let $I$ be the center of the triangle $AED$ and let $K$ be the point of intersection of the lines $AI$ and $CD$. If $AP + AE = BQ + BE$, show that $AI = IK$.
2016 India Regional Mathematical Olympiad, 5
Given a rectangle $ABCD$, determine two points $K$ and $L$ on the sides $BC$ and $CD$ such that the triangles $ABK, AKL$ and $ADL$ have same area.
2010 Contests, 1
Let $ABC$ be right angled triangle with sides $s_1,s_2,s_3$ medians $m_1,m_2,m_3$. Prove that $m_1^2+m_2^2+m_3^2=\frac{3}{4}(s_1^2+s_2^2+s_3^2)$.
2021 Oral Moscow Geometry Olympiad, 1
Quadrilateral $ABCD$ is inscribed in a circle, $E$ is an arbitrary point of this circle. It is known that distances from point $E$ to lines $AB, AC, BD$ and $CD$ are equal to $a, b, c$ and $d$ respectively. Prove that $ad= bc$.
2008 Tournament Of Towns, 3
Acute triangle $A_1A_2A_3$ is inscribed in a circle of radius $2$. Prove that one can choose points $B_1, B_2, B_3$ on the arcs $A_1A_2, A_2A_3, A_3A_1$ respectively, such that the numerical value of the area of the hexagon $A_1B_1A_2B_2A_3B_3$ is equal to the numerical value of the perimeter of the triangle $A_1A_2A_3.$
2006 MOP Homework, 5
Let $ABC$ be an acute triangle with $AC \neq BC$. Points $H$ and $I$ are the orthocenter and incenter of the triangle, respectively. Line $CH$ and $CI$ meet the circumcircle of triangle $ABC$ again at $D$ and $L$ (other than $C$), respectively. Prove that $\angle CIH=90^{\circ}$ if and only if $\angle IDL=90^{\circ}$.