Found problems: 25757
2022 Cyprus TST, 3
Let $ABC$ be an obtuse-angled triangle with $ \angle ABC>90^{\circ}$, and let $(c)$ be its circumcircle. The internal angle bisector of $\angle BAC$ meets again the circle $(c)$ at the point $E$, and the line $BC$ at the point $D$. The circle of diameter $DE$ meets the circle $(c)$ at the point $H$.
If the line $HE$ meets the line $BC$ at the point $K$, prove that:
(a) the points $K, H, D$ and $A$ are concyclic
(b) the line $AH$ passes through the point of intersection of the tangents to the circle $(c)$ at the points $B$ and $C$.
2024 Indonesia TST, 5
Line $\ell$ intersects sides $BC$ and $AD$ of cyclic quadrilateral $ABCD$ in its interior points $R$ and $S$, respectively, and intersects ray $DC$ beyond point $C$ at $Q$, and ray $BA$ beyond point $A$ at $P$. Circumcircles of the triangles $QCR$ and $QDS$ intersect at $N \neq Q$, while circumcircles of the triangles $PAS$ and $PBR$ intersect at $M\neq P$. Let lines $MP$ and $NQ$ meet at point $X$, lines $AB$ and $CD$ meet at point $K$ and lines $BC$ and $AD$ meet at point $L$. Prove that point $X$ lies on line $KL$.
2014 China Second Round Olympiad, 2
Let $ABC$ be an acute triangle such that $\angle BAC \neq 60^\circ$. Let $D,E$ be points such that $BD,CE$ are tangent to the circumcircle of $ABC$ and $BD=CE=BC$ ($A$ is on one side of line $BC$ and $D,E$ are on the other side). Let $F,G$ be intersections of line $DE$ and lines $AB,AC$. Let $M$ be intersection of $CF$ and $BD$, and $N$ be intersection of $CE$ and $BG$. Prove that $AM=AN$.
2007 Romania Team Selection Test, 3
Let $A_{1}A_{2}\ldots A_{2n}$ be a convex polygon and let $P$ be a point in its interior such that it doesn't lie on any of the diagonals of the polygon. Prove that there is a side of the polygon such that none of the lines $PA_{1}$, $\ldots$, $PA_{2n}$ intersects it in its interior.
1992 Romania Team Selection Test, 10
In a tetrahedron $VABC$, let $I$ be the incenter and $A',B',C'$ be arbitrary points on the edges $AV,BV,CV$, and let $S_a,S_b,S_c,S_v$ be the areas of triangles $VBC,VAC,VAB,ABC$, respectively. Show that points $A',B',C',I$ are coplanar if and only if $\frac{AA'}{A'V}S_a +\frac{BB'}{B'V}S_b +\frac{CC'}{C'V}S_c = S_v$
2015 Belarus Team Selection Test, 3
The incircle of the triangle $ABC$ touches the sides $AC$ and $BC$ at points $P$ and $Q$ respectively. $N$ and $M$ are the midpoints of $AC$ and $BC$ respectively. Let $X=AM\cap BP, Y=BN\cap AQ$. Given $C,X,Y$ are collinear, prove that $CX$ is the angle bisector of the angle $ACB$.
I. Gorodnin
1898 Eotvos Mathematical Competition, 2
Prove the following theorem: If two triangles have a common angle, then the sum of the sines of the angles will be larger in that triangle where the difference of the remaining two angles is smaller.
On the basis of this theorem, determine the shape of that triangle for which the sum of the sines of its angles is a maximum.
1983 AIME Problems, 11
The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s = 6 \sqrt{2}$, what is the volume of the solid?
[asy]
import three;
size(170);
pathpen = black+linewidth(0.65);
pointpen = black;
currentprojection = perspective(30,-20,10);
real s = 6 * 2^.5;
triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6);
draw(F--B--C--F--E--A--B);
draw(A--D--E, dashed);
draw(D--C, dashed);
label("$2s$", (s/2, s/2, 6), N);
label("$s$", (s/2, 0, 0), SW);
[/asy]
Oliforum Contest IV 2013, 6
Let $P$ be a polyhedron whose faces are colored black and white so that there are more black faces and no two black faces are adjacent. Show that $P$ is not circumscribed about a sphere.
2019 Belarus Team Selection Test, 4.1
A circle $\omega$ with radius $1$ is given. A collection $T$ of triangles is called [i]good[/i], if the following conditions hold:
[list=1]
[*] each triangle from $T$ is inscribed in $\omega$;
[*] no two triangles from $T$ have a common interior point.
[/list]
Determine all positive real numbers $t$ such that, for each positive integer $n$, there exists a good collection of $n$ triangles, each of perimeter greater than $t$.
2009 Junior Balkan Team Selection Tests - Moldova, 7
In triangle $ABC$ there are points $D\in(AC)$ and $F\in(AB)$ such that $AD=AB$ and line $BC$ splits the segment $[CF]$ in half. Prove that $BF=CD$.
2019 Thailand TST, 2
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
2014 Serbia National Math Olympiad, 6
In a triangle $ABC$, let $D$ and $E$ be the feet of the angle bisectors of angles $A$ and $B$, respectively. A rhombus is inscribed into the quadrilateral $AEDB$ (all vertices of the rhombus lie on different sides of $AEDB$). Let $\varphi$ be the non-obtuse angle of the rhombus. Prove that $\varphi \le \max \{ \angle BAC, \angle ABC \}$
[i]Proposed by Dusan Djukic $IMO \ Shortlist \ 2013$[/i]
2017 USAMO, 3
Let $ABC$ be a scalene triangle with circumcircle $\Omega$ and incenter $I$. Ray $AI$ meets $\overline{BC}$ at $D$ and meets $\Omega$ again at $M$; the circle with diameter $\overline{DM}$ cuts $\Omega$ again at $K$. Lines $MK$ and $BC$ meet at $S$, and $N$ is the midpoint of $\overline{IS}$. The circumcircles of $\triangle KID$ and $\triangle MAN$ intersect at points $L_1$ and $L_2$. Prove that $\Omega$ passes through the midpoint of either $\overline{IL_1}$ or $\overline{IL_2}$.
[i]Proposed by Evan Chen[/i]
Kyiv City MO Juniors Round2 2010+ geometry, 2015.9.4
Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers ${{O} _ {1}}$ and ${{O} _ {2}}$ intersect at points $A$ and $B$, respectively. The line ${{O} _ {1}} {{O} _ {2}}$ intersects ${{w} _ {1}}$ at the point $Q$, which does not lie inside the circle ${{w} _ {2}}$, and ${{w} _ {2}}$ at the point $X$ lying inside the circle ${{w} _ {1} }$. Around the triangle ${{O} _ {1}} AX$ circumscribe a circle ${{w} _ {3}}$ intersecting the circle ${{w} _ {1}}$ for the second time in point $T$. The line $QT$ intersects the circle ${{w} _ {3}}$ at the point $K$, and the line $QB$ intersects ${{w} _ {2}}$ the second time at the point $H$. Prove that
a) points $T, \, \, X, \, \, B$ lie on one line;
b) points $K, \, \, X, \, \, H$ lie on one line.
(Vadym Mitrofanov)
2022 VN Math Olympiad For High School Students, Problem 5
Given a convex quadrilateral $MNPQ$. Assume that there exists 2 points $U, V$ inside $MNPQ$ satifying:$$\angle MUN = \angle MUV = \angle NUV = \angle QVU = \angle PVU = \angle PVQ$$Consider another 2 points $X, Y$ in the plane. Prove that the sum$$XM + XN + XY + YP + YQ$$get its minimum value iff $X\equiv U, Y\equiv V$.
2016 IFYM, Sozopol, 7
We are given a ruler with two marks at a distance 1. With its help we can do all possible constructions as with a ruler with no measurements, including one more: If there is a line $l$ and point $A$ on $l$, then we can construct points $P_1,P_2\in l$ for which $AP_1=AP_2=1$. By using this ruler, construct a perpendicular from a given point to a given line.
2006 Romania National Olympiad, 2
Let $\displaystyle ABC$ and $\displaystyle DBC$ be isosceles triangle with the base $\displaystyle BC$. We know that $\displaystyle \measuredangle ABD = \frac{\pi}{2}$. Let $\displaystyle M$ be the midpoint of $\displaystyle BC$. The points $\displaystyle E,F,P$ are chosen such that $\displaystyle E \in (AB)$, $\displaystyle P \in (MC)$, $\displaystyle C \in (AF)$, and $\displaystyle \measuredangle BDE = \measuredangle ADP = \measuredangle CDF$. Prove that $\displaystyle P$ is the midpoint of $\displaystyle EF$ and $\displaystyle DP \perp EF$.
2012 BMT Spring, 6
A circle with diameter $AB$ is drawn, and the point $ P$ is chosen on segment $AB$ so that $\frac{AP}{AB} =\frac{1}{42}$ . Two new circles $a$ and $b$ are drawn with diameters $AP$ and $PB$ respectively. The perpendicular line to $AB$ passing through $ P$ intersects the circle twice at points $S$ and $T$ . Two more circles $s$ and $t$ are drawn with diameters $SP$ and $ST$ respectively. For any circle $\omega$ let $A(\omega)$ denote the area of the circle. What is $\frac{A(s)+A(t)}{A(a)+A(b)}$?
Novosibirsk Oral Geo Oly VII, 2023.4
Inside the convex pentagon $ABCDE$, a point $O$ was chosen, and it turned out that all five triangles $AOB$, $BOC$, $COD$, $DOE$ and $EOA$ are congrunet to each other. Prove that these triangles are isosceles or right-angled.
2025 239 Open Mathematical Olympiad, 1
There are $100$ points on the plane, all pairwise distances between which are different. Is there always a polyline with vertices at these points, passing through each point once, in which the link lengths increase monotonously?
2004 Dutch Mathematical Olympiad, 4
Two circles $C_1$ and $C_2$ touch each other externally in a point $P$. At point $C_1$ there is a point $Q$ such that the tangent line in $Q$ at $C_1$ intersects the circle $C_2$ at points $A$ and $B$. The line $QP$ still intersects $C_2$ at point $C$.
Prove that triangle $ABC$ is isosceles.
1992 Rioplatense Mathematical Olympiad, Level 3, 3
Let $D$ be the center of the circumcircle of the acute triangle $ABC$. If the circumcircle of triangle $ADB$ intersects $AC$ (or its extension) at $M$ and also $BC$ (or its extension) at $N$, show that the radii of the circumcircles of $\triangle ADB$ and $\triangle MNC$ are equal.
1994 Moldova Team Selection Test, 9
Let $O{}$ be the center of the circumscribed sphere of the tetrahedron $ABCD$. Let $L,M,N$ respectively be the midpoints of the segments $BC,CA,AB$. It is known that $AB+BC=AD+CD$, $BC+CA=BD+AD$, $CA+AB=CD+BD$. Prove that $\angle LOM=\angle MON=\angle NOL$. Find their value.
2021 Indonesia TST, G
Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.