Found problems: 25757
2006 Belarusian National Olympiad, 5
A convex quadrilateral $ABCD$ Is placed on the Cartesian plane. Its vertices $A$ and $D$ belong to the negative branch of the graph of the hyperbola $y= 1/x$, the vertices $B$ and $C$ belong to the positive branch of the graph and point $B$ lies at the left of $C$, the segment $AC$ passes through the origin $(0,0)$. Prove that $\angle BAD = \angle BCD$.
(I, Voronovich)
2020 BMT Fall, 2
Let $O$ be a circle with diameter $AB = 2$. Circles $O_1$ and $O_2$ have centers on $\overline{AB}$ such that $O$ is tangent to $O_1$ at $A$ and to $O_2$ at $B$, and $O_1$ and $O_2$ are externally tangent to each other. The minimum possible value of the sum of the areas of $O_1$ and $O_2$ can be written in the form $\frac{m\pi}{n}$ where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
2011 Tuymaada Olympiad, 3
An excircle of triangle $ABC$ touches the side $AB$ at $P$ and the extensions of sides $AC$ and $BC$ at $Q$ and $R$, respectively. Prove that if the midpoint of $PQ$ lies on the circumcircle of $ABC$, then the midpoint of $PR$ also lies on that circumcircle.
2020 Ukrainian Geometry Olympiad - December, 3
On the sides $AB$ and $AC$ of a triangle $ABC$ select points $D$ and $E$ respectively, such that $AB = 6$, $AC = 9$, $AD = 4$ and $AE = 6$. It is known that the circumscribed circle of $\vartriangle ADE$ interects the side $BC$ at points $F, G$ , where $BF < BG$. Knowing that the point of intersection of lines $DF$ and $EG$ lies on the circumscribed circle of $\vartriangle ABC$ , find the ratio $BC:FG$.
2023 Romania National Olympiad, 2
In the parallelogram $ABCD$, $AC \cap BD = { O }$, and $M$ is the midpoint of $AB$. Let $P \in (OC)$ and $MP \cap BC = { Q }$. We draw a line parallel to $MP$ from $O$, which intersects line $CD$ at point $N$. Show that $A,N,Q$ are collinear if and only if $P$ is the midpoint of $OC$.
2013 India PRMO, 15
Let $A_1,B_1,C_1,D_1$ be the midpoints of the sides of a convex quadrilateral $ABCD$ and let $A_2, B_2, C_2, D_2$ be the midpoints of the sides of the quadrilateral $A_1B_1C_1D_1$. If $A_2B_2C_2D_2$ is a rectangle with sides $4$ and $6$, then what is the product of the lengths of the diagonals of $ABCD$ ?
2014 PUMaC Team, 2
Given a Pacman of radius $1$, and mouth opening angle $90^\circ$, what is the largest (circular) pellet it can eat? The pellet must lie entirely outside the yellow portion and entirely inside the circumcircle of the Pacman. Let the radius be equal to $a\sqrt b+c$. where $b$ is square free. Find $a+b+c$.
2010 AMC 10, 17
A solid cube has side length $ 3$ inches. A $ 2$-inch by $ 2$-inch square hole is cut into the center of each face. The edges of each cut are parallel to the edges of the cube, and each hole goes all the way through the cube. What is the volume, in cubic inches, of the remaining solid?
$ \textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10\qquad \textbf{(D)}\ 12\qquad \textbf{(E)}\ 15$
2016 Azerbaijan National Mathematical Olympiad, 2
On the extension of the hypotenuse $AB$ of the right-angled triangle $ABC$, the point $D$ after the point B is marked so that $DC = 2BC$. Let the point $H$ be the foot of the altitude dropped from the vertex $C$. If the distance from the point $H$ to the side $BC$ is equal to the length of the segment $HA$, prove that $\angle BDC = 18$.
2014 NIMO Problems, 14
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Evan Chen[/i]
2015 AMC 12/AHSME, 20
Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths $5$, $5$, and $8$, while those of $T'$ have lengths $a$, $a$, and $b$. Which of the following numbers is closest to $b$?
$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }8$
2022 VN Math Olympiad For High School Students, Problem 4
Assume that $\triangle ABC$ is acute. Let $a=BC, b=CA, c=AB$.
a) Denote $H$ by the orthocenter of $\triangle ABC$. Prove that:$$a.\frac{{\overrightarrow {HA} }}{{HA}} + b.\frac{{\overrightarrow {HB} }}{{HB}} + c.\frac{{\overrightarrow {HC} }}{{HC}} = \overrightarrow 0 .$$
b) Consider a point $P$ lying on the plane. Prove that the sum:$$aPa+bPB+cPC$$ get its minimum value iff $P\equiv H$.
2017 AMC 12/AHSME, 14
An ice-cream novelty item consists of a cup in the shape of a $4$-inch-tall frustum of a right circular cone, with a $2$-inch-diameter base at the bottom and a $4$-inch-diameter base at the top, packed solid with ice cream, together with a solid cone of ice cream of height $4$ inches, whose base, at the bottom, is the top base of the frustum. What is the total volume of the ice cream, in cubic inches?
$\textbf{(A)}\ 8\pi\qquad\textbf{(B)}\ \frac{28\pi}{3}\qquad\textbf{(C)}\ 12\pi\qquad\textbf{(D)}\ 14\pi\qquad\textbf{(E)}\ \frac{44\pi}{3}$
1949-56 Chisinau City MO, 30
Through the point of intersection of the diagonals of the trapezoid, a straight line is drawn parallel to its bases. Determine the length of the segment of this straight line, enclosed between the lateral sides of the trapezoid, if the lengths of the bases of the trapezoid are equal to $a$ and $b$.
EMCC Guts Rounds, 2023
[u]Round 5[/u]
[b]p13.[/b] For a square pyramid whose base has side length $9$, a square is formed by connecting the centroids of the four triangular faces. What is the area of the square formed by the centroids?
[b]p14.[/b] Farley picks a real number p uniformly at random in the range $\left( \frac13, \frac23 \right)$. She then creates a special coin that lands on heads with probability $p$ and tails with probability $1 - p$. She flips this coin, and it lands on heads. What is the probability that $p > \frac12$?
[b]p15.[/b] Let $ABCD$ be a quadrilateral with $\angle A = \angle C = 90^o$. Extend $AB$ and $CD$ to meet at point $P$. Given that $P B = 3$, $BA = 21$, and $P C = 1$, find $BD^2$
[u]Round 6[/u]
[b]p16.[/b] Three congruent, mutually tangent semicircles are inscribed in a larger semicircle, as shown in the diagram below. If the larger semicircle has a radius of $30$ units, what is the radius of one of the smaller semicircles?
[img]https://cdn.artofproblemsolving.com/attachments/5/e/1b73791e95dc4ed6342f0151f3f63e1b31ae3c.png[/img]
[b]p17.[/b] In isosceles trapezoid $ABCD$ with $BC \parallel AD$, the distances from $A$ and $B$ to line $CD$ are $3$ and $9$, respectively. If the distance between the two bases of trapezoid $ABCD$ is $5$, find the area of quadrilateral $ABCD$.
[b]p18.[/b] How many ways are there to tile the “$E$” shape below with dominos? A domino covers two adjacent squares.
[img]https://cdn.artofproblemsolving.com/attachments/b/b/82bdb8d8df8bc3d00b9aef9eb39e55358c4bc6.png[/img]
[u]Round 7[/u]
[b]p19.[/b] In isoceles triangle $ABC$, $AC = BC$ and $\angle ACB = 20^o$. Let $\Omega$ be the circumcircle of triangle $ABC$ with center $O$, and let $M$ be the midpoint of segment $BC$. Ray $\overrightarrow{OM}$ intersects $\Omega$ at $D$. Let $\omega$ be the circle with diameter $OD$. $AD$ intersects $\omega$ again at a point $X$ not equal to $D$. Given $OD = 2$, find the area of triangle $OXD$.
[b]p20.[/b] Find the smallest odd prime factor of $2023^{2029} + 2026^{2029} - 1$.
[b]p21.[/b] Achyuta, Alan, Andrew, Anish, and Ava are playing in the EMCC games. Each person starts with a paper with their name taped on their back. A person is eliminated from the game when anybody rips their paper off of their back. The game ends when one person remains. The remaining person then rips their paper off of their own back. At the end of the game, each person collects the papers that they ripped off. How many distinct ways can the papers be distributed at the end of the game?
[u]Round 8[/u]
[b]p22.[/b] Anthony has three random number generators, labelled $A$, $B$ and $C$.
$\bullet$ Generator$ A$ returns a random number from the set $\{12, 24, 36, 48, 60\}$.
$\bullet$ Generator $B$ returns a random number from the set $ \{15, 30, 45, 60\}$.
$\bullet$ Generator $C$ returns a random number from the set $\{20, 40, 60\}$.
He uses generator $A$, $B$, and then $C$ in succession, and then repeats this process indefinitely. Anthony keeps a running total of the sum of all previously generated numbers, writing down the new total every time he uses a generator. After he uses each machine $10 $ times, what is the average number of multiples of $60$ that Anthony will have written down?
[b]p23.[/b] A laser is shot from one of the corners of a perfectly reflective room shaped like an equilateral triangle. The laser is reflected 2497 times without shining into a corner of the room, but after the 2497th reflection, it shines directly into the corner it started from. How many different angles could the laser have been initially pointed?
[b]p24.[/b] We call a k-digit number blissful if the number of positive integers $n$ such that $n^n$ ends in that $k$-digit number happens to be nonzero and finite. What is the smallest value of $k$ such that there exists a blissful $k$-digit number?
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3131523p28369592]here[/url].. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 ELMO Shortlist, G7
Let \(\mathcal E\) be an ellipse with foci \(F_1\) and \(F_2\), and let \(P\) be a point on \(\mathcal E\). Suppose lines \(PF_1\) and \(PF_2\) intersect \(\mathcal E\) again at distinct points \(A\) and \(B\), and the tangents to \(\mathcal E\) at \(A\) and \(B\) intersect at point \(Q\). Show that the midpoint of \(\overline{PQ}\) lies on the circumcircle of \(\triangle PF_1F_2\).
[i]Proposed by Karthik Vedula[/i]
2005 Iran MO (3rd Round), 4
Suppose in triangle $ABC$ incircle touches the side $BC$ at $P$ and $\angle APB=\alpha$. Prove that : \[\frac1{p-b}+\frac1{p-c}=\frac2{rtg\alpha}\]
2009 CHKMO, 3
$ \Delta ABC$ is a triangle such that $ AB \neq AC$. The incircle of $ \Delta ABC$ touches $ BC, CA, AB$ at $ D, E, F$ respectively. $ H$ is a point on the segment $ EF$ such that $ DH \bot EF$. Suppose $ AH \bot BC$, prove that $ H$ is the orthocentre of $ \Delta ABC$.
Remark: the original question has missed the condition $ AB \neq AC$
1987 ITAMO, 3
Show how to construct (by a ruler and a compass) a right-angled triangle, given its inradius and circumradius.
2009 Federal Competition For Advanced Students, P2, 6
The quadrilateral PQRS whose vertices are the midpoints of the sides AB, BC,
CD, DA, respectively of a quadrilateral ABCD is called the midpoint quadrilateral
of ABCD.
Determine all circumscribed quadrilaterals whose mid-point quadrilaterals are
squares.
.
2013 Math Prize For Girls Problems, 15
Let $\triangle ABC$ be a triangle with $AB = 7$, $BC = 8$, and $AC = 9$. Point $D$ is on side $\overline{AC}$ such that $\angle CBD$ has measure $45^\circ$. What is the length of $\overline{BD}$?
2011 Argentina National Olympiad, 3
Let $ABC$ be a triangle with $\angle A = 90^o, \angle B = 75^o$ and $AB = 2$. The points $P$ and $Q$ on the sides $AC$ and $BC$ respectively are such that $\angle APB = \angle CPQ$ and $\angle BQA = \angle CQP$ . Calculate the measurement of the segment $QA $.
2011 Dutch BxMO TST, 2
In an acute triangle $ABC$ the angle $\angle C$ is greater than $\angle A$. Let $E$ be such that $AE$ is a diameter of the circumscribed circle $\Gamma$ of \vartriangle ABC. Let $K$ be the intersection of $AC$ and the tangent line at $B$ to $\Gamma$. Let $L$ be the orthogonal projection of $K$ on $AE$ and let $D$ be the intersection of $KL$ and $AB$. Prove that $CE$ is the bisector of $\angle BCD$.
2016 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle with centroid $G$. Let the circumcircle of triangle $AGB$ intersect the line $BC$ in $X$ different from $B$; and the circucircle of triangle $AGC$ intersect the line $BC$ in $Y$ different from $C$. Prove that $G$ is the centroid of triangle $AXY$.
2023 IFYM, Sozopol, 6
In triangle $ABC$, $\angle ABC = 54^\circ$ and $\angle ACB = 42^\circ$. Point $D$ is the foot of the altitude from vertex $A$ to $BC$, and $I$ is the incenter of $\triangle ABC$. Point $K$ lies on line $AD$, such that $D$ is between $A$ and $K$ and $AK$ is equal to the diameter of the circumcircle of $\triangle ABC$. Find the measure of $\angle KID$.