Found problems: 25757
1992 Turkey Team Selection Test, 1
The feet of perpendiculars from the intersection point of the diagonals of cyclic quadrilateral $ABCD$ to the sides $AB,BC,CD,DA$ are $P,Q,R,S$, respectively. Prove $PQ+RS=QR+SP$.
2017 Benelux, 3
In the convex quadrilateral $ABCD$ we have $\angle B = \angle C$ and $\angle D = 90^{\circ}.$ Suppose that $|AB| = 2|CD|.$ Prove that the angle bisector of $\angle ACB$ is perpendicular to $CD.$
2021 Silk Road, 3
In a triangle $ABC$, $M$ is the midpoint of the $AB$. A point $B_1$ is marked on $AC$ such that $CB=CB_1$. Circle $\omega$ and $\omega_1$, the circumcircles of triangles $ABC$ and $BMB_1$, respectively, intersect again at $K$. Let $Q$ be the midpoint of the arc $ACB$ on $\omega$. Let $B_1Q$ and $BC$ intersect at $E$. Prove that $KC$ bisects $B_1E$.
[i]M. Kungozhin[/i]
1999 APMO, 5
Let $S$ be a set of $2n+1$ points in the plane such that no three are collinear and no four concyclic. A circle will be called $\text{Good}$ if it has 3 points of $S$ on its circumference, $n-1$ points in its interior and $n-1$ points in its exterior.
Prove that the number of good circles has the same parity as $n$.
1986 IMO Longlists, 75
The incenter of a triangle is the midpoint of the line segment of length $4$ joining the centroid and the orthocenter of the triangle. Determine the maximum possible area of the triangle.
2019 Vietnam TST, P5
Given a scalene triangle $ABC$ inscribed in the circle $(O)$. Let $(I)$ be its incircle and $BI,CI$ cut $AC,AB$ at $E,F$ respectively. A circle passes through $E$ and touches $OB$ at $B$ cuts $(O)$ again at $M$. Similarly, a circle passes through $F$ and touches $OC$ at $C$ cuts $(O)$ again at $N$. $ME,NF$ cut $(O)$ again at $P,Q$. Let $K$ be the intersection of $EF$ and $BC$ and let $PQ$ cuts $BC$ and $EF$ at $G,H$, respectively. Show that the median correspond to $G$ of the triangle $GHK$ is perpendicular to $IO$.
2021 Sharygin Geometry Olympiad, 8.7
Let $ABCDE$ be a convex pentagon such that angles $CAB$, $BCA$, $ECD$, $DEC$ and $AEC$ are equal. Prove that $CE$ bisects $BD$.
2002 Romania National Olympiad, 1
Let $X,Y,Z,T$ be four points in the plane. The segments $[XY]$ and $[ZT]$ are said to be [i]connected[/i], if there is some point $O$ in the plane such that the triangles $OXY$ and $OZT$ are right-angled at $O$ and isosceles.
Let $ABCDEF$ be a convex hexagon such that the pairs of segments $[AB],[CE],$ and $[BD],[EF]$ are [i]connected[/i]. Show that the points $A,C,D$ and $F$ are the vertices of a parallelogram and $[BC]$ and $[AE]$ are [i]connected[/i].
2013 Balkan MO Shortlist, G5
Let $ABC$ be an acute triangle with $AB < AC < BC$ inscribed in a circle $(c)$ and let $E$ be an arbitrary point on its altitude $CD$. The circle $(c_1)$ with diameter $EC$, intersects the circle $(c)$ at point $K$ (different than $C$), the line $AC$ at point $L$ and the line $BC$ at point $M$. Finally the line $KE$ intersects $AB$ at point $N$. Prove that the quadrilateral $DLMN$ is cyclic.
2018 Finnish National High School Mathematics Comp, 3
The chords $AB$ and $CD$ of a circle intersect at $M$, which is the midpoint of the chord $PQ$. The points $X$ and $Y$ are the intersections of the segments $AD$ and $PQ$, respectively, and $BC$ and $PQ$, respectively. Show that $M$ is the midpoint of $XY$.
2020 Nigerian MO round 3, #1
in $ABC$ let $E$ and $F$ be points on line $AC$ and $AB$ respectively such that $BE$ is parallel to $CF$. suppose that the circumcircle of $BCE$ meet $AB$ again at $F'$ and the circumcircle of $BCF$ meets $AC$ again at $E'$. show that $BE'$ Is parallel to $CF'$.
Geometry Mathley 2011-12, 13.1
Let $ABC$ be a triangle with no right angle, $E$ on the line $BC$ such that $\angle AEB = \angle BAC$ and $\Delta_A$ the perpendicular to $BC$ at $E$. Let the circle $\gamma$ with diameter $BC$ intersect $BA$ again at $D$. For each point $M$ on $\gamma$ ($M$ is distinct from $B$), the line $BM$ meets $\Delta_A$ at $M'$ and the line $AM$ meets $\gamma$ again at $M''$.
(a) Show that $p(A) = AM' \times DM''$ is independent of the chosen $M$.
(b) Keeping $B,C$ fixed, and let $A$ vary. Show that $\frac{p(A)}{d(A,\Delta_A)}$ is independent of $A$.
Michel Bataille
1988 AIME Problems, 7
In triangle $ABC$, $\tan \angle CAB = 22/7$, and the altitude from $A$ divides $BC$ into segments of length 3 and 17. What is the area of triangle $ABC$?
2008 National Olympiad First Round, 25
Let $C$ and $D$ be points on the circle with center $O$ and diameter $[AB]$ where $C$ and $D$ are on different semicircles with diameter $[AB]$. Let $H$ be the foot perpendicular from $B$ to $[CD]$. If $|AO|=13$, $|AC|=24$, and $|HD|=12$, what is $\widehat{DCB}$ in degrees?
$
\textbf{(A)}\ 30
\qquad\textbf{(B)}\ 45
\qquad\textbf{(C)}\ 60
\qquad\textbf{(D)}\ 75
\qquad\textbf{(E)}\ 80
$
2015 Mediterranean Mathematical Olympiad, 3
In the Cartesian plane $\mathbb{R}^2,$ each triangle contains a Mediterranean point on its sides or in its interior, even if the triangle is degenerated into a segment or a point. The Mediterranean points have the following properties:
[b](i)[/b] If a triangle is symmetric with respect to a line which passes through the origin $(0,0)$, then the Mediterranean point lies on this line.
[b](ii)[/b] If the triangle $DEF$ contains the triangle $ABC$ and if the triangle $ABC$ contains the Mediterranean points $M$ of $DEF,$ then $M$ is the Mediterranean point of the triangle $ABC.$
Find all possible positions for the Mediterranean point of the triangle with vertices $(-3,5),\ (12,5),\ (3,11).$
2011 QEDMO 9th, 5
Let $P$ be a convex polygon, so have all interior angles smaller than $180^o$, and let $X$ be a point in the interior of $P$. Prove that $P$ has a side $[AB]$ such that the perpendicular from $X$ to the line $AB$ lies on the side $[AB]$.
1990 AIME Problems, 14
The rectangle $ABCD$ below has dimensions $AB = 12 \sqrt{3}$ and $BC = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$. If triangle $ABP$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid.
[asy]
pair D=origin, A=(13,0), B=(13,12), C=(0,12), P=(6.5, 6);
draw(B--C--P--D--C^^D--A);
filldraw(A--P--B--cycle, gray, black);
label("$A$", A, SE);
label("$B$", B, NE);
label("$C$", C, NW);
label("$D$", D, SW);
label("$P$", P, N);
label("$13\sqrt{3}$", A--D, S);
label("$12\sqrt{3}$", A--B, E);[/asy]
2020 Regional Competition For Advanced Students, 3
Let a triangle $ABC$ be given with $AB <AC$. Let the inscribed center of the triangle be $I$. The perpendicular bisector of side $BC$ intersects the angle bisector of $BAC$ at point $S$ and the angle bisector of $CBA$ at point $T$. Prove that the points $C, I, S$ and $T$ lie on a circle.
(Karl Czakler)
2012 Oral Moscow Geometry Olympiad, 4
Inside the convex polyhedron, the point $P$ and several lines $\ell_1,\ell_2, ..., \ell_n$ passing through $P$ and not lying in the same plane. To each face of the polyhedron we associate one of the lines $l_1, l_2, ..., l_n$ that forms the largest angle with the plane of this face (if there are there are several direct ones, we will choose any of them). Prove that there is a face that intersects with its corresponding line.
2023 Kyiv City MO, Problem 1
The rectangle is cut into 6 squares, as shown on the figure below. The gray square in the middle has a side equal to 1.
What is the area of the rectangle?
[img]https://i.ibb.co/gg1tBTN/Kyiv-MO-2023-7-1.png[/img]
2010 Contests, 1
Let $f:S\to\mathbb{R}$ be the function from the set of all right triangles into the set of real numbers, defined by $f(\Delta ABC)=\frac{h}{r}$, where $h$ is the height with respect to the hypotenuse and $r$ is the inscribed circle's radius. Find the image, $Im(f)$, of the function.
2024 Singapore Junior Maths Olympiad, Q1
Let $ABC$ be an isosceles right-angled triangle of area 1. Find the length of the shortest segment that divides the triangle into 2 parts of equal area.
2009 Vietnam Team Selection Test, 2
Let a circle $ (O)$ with diameter $ AB$. A point $ M$ move inside $ (O)$. Internal bisector of $ \widehat{AMB}$ cut $ (O)$ at $ N$, external bisector of $ \widehat{AMB}$ cut $ NA,NB$ at $ P,Q$. $ AM,BM$ cut circle with diameter $ NQ,NP$ at $ R,S$.
Prove that: median from $ N$ of triangle $ NRS$ pass over a fix point.
1978 IMO Longlists, 38
Given a circle, construct a chord that is trisected by two given noncollinear radii.
2002 Tournament Of Towns, 5
Two circles $\Gamma_1,\Gamma_2$ intersect at $A,B$. Through $B$ a straight line $\ell$ is drawn and $\ell\cap \Gamma_1=K,\ell\cap\Gamma_2=M\;(K,M\neq B)$. We are given $\ell_1\parallel AM$ is tangent to $\Gamma_1$ at $Q$. $QA\cap \Gamma_2=R\;(\neq A)$ and further $\ell_2$ is tangent to $\Gamma_2$ at $R$.
Prove that:
[list]
[*]$\ell_2\parallel AK$
[*]$\ell,\ell_1,\ell_2$ have a common point.[/list]