This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2016 Sharygin Geometry Olympiad, 1

A line parallel to the side $BC$ of a triangle $ABC$ meets the sides $AB$ and $AC$ at points $P$ and $Q$, respectively. A point $M$ is chosen inside the triangle $APQ$. The segments $MB$ and $MC$ meet the segment $PQ$ at points $E$ and $F$, respectively. Let $N$ be the second intersection point of the circumcircles of the triangles $PMF$ and $QME$. Prove that the points $A,M,N$ are collinear.

2014 IMC, 5

Let $A_{1}A_{2} \dots A_{3n}$ be a closed broken line consisting of $3n$ lines segments in the Euclidean plane. Suppose that no three of its vertices are collinear, and for each index $i=1,2,\dots,3n$, the triangle $A_{i}A_{i+1}A_{i+2}$ has counterclockwise orientation and $\angle A_{i}A_{i+1}A_{i+2} = 60º$, using the notation $A_{3n+1} = A_{1}$ and $A_{3n+2} = A_{2}$. Prove that the number of self-intersections of the broken line is at most $\frac{3}{2}n^{2} - 2n + 1$

Math Hour Olympiad, Grades 5-7, 2010.67

[u]Round 1[/u] [b]p1.[/b] Is it possible to draw some number of diagonals in a convex hexagon so that every diagonal crosses EXACTLY three others in the interior of the hexagon? (Diagonals that touch at one of the corners of the hexagon DO NOT count as crossing.) [b]p2.[/b] A $ 3\times 3$ square grid is filled with positive numbers so that (a) the product of the numbers in every row is $1$, (b) the product of the numbers in every column is $1$, (c) the product of the numbers in any of the four $2\times 2$ squares is $2$. What is the middle number in the grid? Find all possible answers and show that there are no others. [b]p3.[/b] Each letter in $HAGRID$'s name represents a distinct digit between $0$ and $9$. Show that $$HAGRID \times H \times A\times G\times R\times I\times D$$ is divisible by $3$. (For example, if $H=1$, $A=2$, $G=3$, $R = 4$, $I = 5$, $D = 64$, then $HAGRID \times H \times A\times G\times R\times I\times D= 123456\times 1\times2\times3\times4\times5\times 6$). [b]p4.[/b] You walk into a room and find five boxes sitting on a table. Each box contains some number of coins, and you can see how many coins are in each box. In the corner of the room, there is a large pile of coins. You can take two coins at a time from the pile and place them in different boxes. If you can add coins to boxes in this way as many times as you like, can you guarantee that each box on the table will eventually contain the same number of coins? [b]p5.[/b] Alex, Bob and Chad are playing a table tennis tournament. During each game, two boys are playing each other and one is resting. In the next game the boy who lost a game goes to rest, and the boy who was resting plays the winner. By the end of tournament, Alex played a total of $10$ games, Bob played $15$ games, and Chad played $17$ games. Who lost the second game? [u]Round 2[/u] [b]p6.[/b] After going for a swim in his vault of gold coins, Scrooge McDuck decides he wants to try to arrange some of his gold coins on a table so that every coin he places on the table touches exactly three others. Can he possibly do this? You need to justify your answer. (Assume the gold coins are circular, and that they all have the same size. Coins must be laid at on the table, and no two of them can overlap.) [b]p7.[/b] You have a deck of $50$ cards, each of which is labeled with a number between $1$ and $25$. In the deck, there are exactly two cards with each label. The cards are shuffled and dealt to $25$ students who are sitting at a round table, and each student receives two cards. The students will now play a game. On every move of the game, each student takes the card with the smaller number out of his or her hand and passes it to the person on his/her right. Each student makes this move at the same time so that everyone always has exactly two cards. The game continues until some student has a pair of cards with the same number. Show that this game will eventually end. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Cono Sur Shortlist - geometry, 2021.G3

Let $ABCD$ be a parallelogram with vertices in order clockwise and let $E$ be the intersection of its diagonals. The circle of diameter $DE$ intersects the segment $AD$ at $L$ and $EC$ at $H$. The circumscribed circle of $LEB$ intersects the segment $BC$ at $O$. Prove that the lines $HD$ , $LE$ and $BC$ are concurrent if and only if $EO = EC$.

2005 USAMO, 4

Legs $L_1, L_2, L_3, L_4$ of a square table each have length $n$, where $n$ is a positive integer. For how many ordered 4-tuples $(k_1, k_2, k_3, k_4)$ of nonnegative integers can we cut a piece of length $k_i$ from the end of leg $L_i \; (i=1,2,3,4)$ and still have a stable table? (The table is [i]stable[/i] if it can be placed so that all four of the leg ends touch the floor. Note that a cut leg of length 0 is permitted.)

2011 Postal Coaching, 1

Let $ABC$ be a triangle in which $\angle BAC = 60^{\circ}$ . Let $P$ (similarly $Q$) be the point of intersection of the bisector of $\angle ABC$(similarly of $\angle ACB$) and the side $AC$(similarly $AB$). Let $r_1$ and $r_2$ be the in-radii of the triangles $ABC$ and $AP Q$, respectively. Determine the circum-radius of $APQ$ in terms of $r_1$ and $r_2$.

V Soros Olympiad 1998 - 99 (Russia), 9.9

What is the largest area of a right triangle, the vertices of which are located at distances $a$, $b$ and $c$ from a certain point (where $a$ is the distance to the vertex of the right angle)?

1990 Bundeswettbewerb Mathematik, 4

In the plane there is a worm of length 1. Prove that it can be always covered by means of half of a circular disk of diameter 1. [i]Note.[/i] Under a "worm", we understand a continuous curve. The "half of a circular disk" is a semicircle including its boundary.

2021 Saudi Arabia Training Tests, 24

Tags: excenter , geometry
Let $ABC$ be triangle with $M$ is the midpoint of $BC$ and $X, Y$ are excenters with respect to angle $B,C$. Prove that $MX$, $MY$ intersect $AB$, $AC$ at four points that are vertices of circumscribed quadrilateral.

1985 Poland - Second Round, 1

Inside the triangle $ABC$, the point $P$ is chosen. Let $ a, b, c $ be the lengths of the sides $ BC $, $ CA $, $ AB $, respectively, and $ x, y, z $ the distances of the point $ P $ from the vertices $ B, C, A $. Prove that if $$ x^2 + xy + y^2 = a^2 $$ $$y^2 + yz + z^2 = b^2 $$ $$z^2 + zx + x^2 = c^2$$ this $$ a^2 + ab + b^2 > c^2.$$

2020 Novosibirsk Oral Olympiad in Geometry, 2

It is known that four of these sticks can be assembled into a quadrilateral. Is it always true that you can make a triangle out of three of them?

2018 Greece JBMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC<BC, c$ it's circumscribed circle and $D,E$ be the midpoints of $AB,AC$ respectively. With diameters the sides $AB,AC$, we draw semicircles, outer of the triangle, which are intersected by line $D$ at points $M$ and $N$ respectively. Lines $MB$ and $NC$ intersect the circumscribed circle at points $T,S$ respectively. Lines $MB$ and $NC$ intersect at point $H$. Prove that: a) point $H$ lies on the circumcircle of triangle $AMN$ b) lines $AH$ and $TS$ are perpedicular and their intersection, let it be $Z$, is the circimcenter of triangle $AMN$

2020 ITAMO, 1

Let $\omega$ be a circle and let $A,B,C,D,E$ be five points on $\omega$ in this order. Define $F=BC\cap DE$, such that the points $F$ and $A$ are on opposite sides, with regard to the line $BE$ and the line $AE$ is tangent to the circumcircle of the triangle $BFE$. a) Prove that the lines $AC$ and $DE$ are parallel b) Prove that $AE=CD$

2001 Tournament Of Towns, 1

Tags: geometry
In the quadrilateral $ABCD$, $AD$ is parallel to $BC$. $K$ is a point on $AB$. Draw the line through $A$ parallel to $KC$ and the line through $B$ parallel to $KD$. Prove that these two lines intersect at some point on $CD$.

2016 Czech-Polish-Slovak Match, 3

Let $ABC$ be an acute-angled triangle with $AB < AC$. Tangent to its circumcircle $\Omega$ at $A$ intersects the line $BC$ at $D$. Let $G$ be the centroid of $\triangle ABC$ and let $AG$ meet $\Omega$ again at $H \neq A$. Suppose the line $DG$ intersects the lines $AB$ and $AC$ at $E$ and $F$, respectively. Prove that $\angle EHG = \angle GHF$.(Slovakia)

2024 ELMO Shortlist, G4

Tags: geometry
In quadrilateral $ABCD$ with incenter $I$, points $W,X,Y,Z$ lie on sides $AB, BC,CD,DA$ with $AZ=AW$, $BW=BX$, $CX=CY$, $DY=DZ$. Define $T=\overline{AC}\cap\overline{BD}$ and $L=\overline{WY}\cap\overline{XZ}$. Let points $O_a,O_b,O_c,O_d$ be such that $\angle O_aZA=\angle O_aWA=90^\circ$ (and cyclic variants), and $G=\overline{O_aO_c}\cap\overline{O_bO_d}$. Prove that $\overline{IL}\parallel\overline{TG}$. [i]Neal Yan[/i]

1935 Eotvos Mathematical Competition, 3

A real number is assigned to each vertex of a triangular prism so that the number on any vertex is the arithmetic mean of the numbers on the three adjacent vertices. Prove that all six numbers are equal.

1982 Tournament Of Towns, (021) 2

A square is subdivided into $K^2$ equal smaller squares. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). Find the minimum number of links in this broken line. (A Andjans, Riga)

1997 Belarusian National Olympiad, 4

A triangle $A_1B_1C_1$ is a parallel projection of a triangle $ABC$ in space. The parallel projections $A_1H_1$ and $C_1L_1$ of the altitude $AH$ and the bisector $CL$ of $\vartriangle ABC$ respectively are drawn. Using a ruler and compass, construct a parallel projection of : (a) the orthocenter, (b) the incenter of $\vartriangle ABC$.

1984 IMO Longlists, 63

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

Denmark (Mohr) - geometry, 1994.4

In a right-angled triangle in which all side lengths are integers, one has a cathetus length $1994$. Determine the length of the hypotenuse.

2017 Ukrainian Geometry Olympiad, 1

In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.

Champions Tournament Seniors - geometry, 2008.4

Given a quadrangular pyramid $SABCD$, the basis of which is a convex quadrilateral $ABCD$. It is known that the pyramid can be tangent to a sphere. Let $P$ be the point of contact of this sphere with the base $ABCD$. Prove that $\angle APB + \angle CPD = 180^o$.

2021 Korea Winter Program Practice Test, 4

A positive integer $m(\ge 2$) is given. From circle $C_1$ with a radius 1, construct $C_2, C_3, C_4, ... $ through following acts: In the $i$th act, select a circle $P_i$ inside $C_i$ with a area $\frac{1}{m}$ of $C_i$. If such circle dosen't exist, the act ends. If not, let $C_{i+1}$ a difference of sets $C_i -P_i$. Prove that this act ends within a finite number of times.

1976 AMC 12/AHSME, 16

Tags: geometry
In triangles $ABC$ and $DEF$, lengths $AC,~BC,~DF,$ and $EF$ are all equal. Length $AB$ is twice the length of the altitude of $\triangle DEF$ from $F$ to $DE$. Which of the following statements is (are) true? $\textbf{I. }\angle ACB \text{ and }\angle DFE\text{ must be complementary.}$ $\textbf{II. }\angle ACB \text{ and }\angle DFE\text{ must be supplementary.}$ ${\textbf{III. }\text{The area of }\triangle ABC\text{ must equal the area of }\triangle DEF.}$ ${\textbf{IV. }\text{The area of }\triangle ABC\text{ must equal twice the area of }\triangle DEF.}$ $\textbf{(A) }\textbf{II. }\text{only}\qquad\textbf{(B) }\textbf{III. }\text{only}\qquad$ $\textbf{(C) }\textbf{IV. }\text{only}\qquad\textbf{(D) }\text{I. }\text{and }\textbf{III. }\text{only}\qquad \textbf{(E) }\textbf{II. }\text{and }\textbf{III. }\text{only}$