This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 AMC 10, 10

In the rectangular parallelpiped shown, $AB = 3, BC= 1,$ and $CG = 2.$ Point $M$ is the midpoint of $\overline{FG}$. What is the volume of the rectangular pyramid with base $BCHE$ and apex $M$? [asy] size(250); defaultpen(fontsize(10pt)); pair A =origin; pair B = (4.75,0); pair E1=(0,3); pair F = (4.75,3); pair G = (5.95,4.2); pair C = (5.95,1.2); pair D = (1.2,1.2); pair H= (1.2,4.2); pair M = ((4.75+5.95)/2,3.6); draw(E1--M--H--E1--A--B--E1--F--B--M--C--G--H); draw(B--C); draw(F--G); draw(A--D--H--C--D,dashed); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,E); label("$D$",D,W); label("$E$",E1,W); label("$F$",F,SW); label("$G$",G,NE); label("$H$",H,NW); label("$M$",M,N); dot(A); dot(B); dot(E1); dot(F); dot(G); dot(C); dot(D); dot(H); dot(M); label("3",A/2+B/2,S); label("2",C/2+G/2,E); label("1",C/2+B/2,SE);[/asy] $\textbf{(A) } 1 \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{5}{3} \qquad \textbf{(E) } 2$

2000 National Olympiad First Round, 1

If the incircle of a right triangle with area $a$ is the circumcircle of a right triangle with area $b$, what is the minimum value of $\frac{a}{b}$? $ \textbf{(A)}\ 3 + 2\sqrt2 \qquad\textbf{(B)}\ 1+\sqrt2 \qquad\textbf{(C)}\ 2\sqrt2 \qquad\textbf{(D)}\ 2+\sqrt3 \qquad\textbf{(E)}\ 2\sqrt3$

2024 Kyiv City MO Round 1, Problem 3

The circle $\gamma$ passing through the vertex $A$ of triangle $ABC$ intersects its sides $AB$ and $AC$ for the second time at points $X$ and $Y$, respectively. Also, the circle $\gamma$ intersects side $BC$ at points $D$ and $E$ so that $AD = AE$. Prove that the points $B, X, Y, C$ lie on the same circle. [i]Proposed by Mykhailo Shtandenko[/i]

2021 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
Given is cyclic quadrilateral $ABCD$ with∠$A = 3$∠$B$. On the $AB$ side is chosen point $C_1$, and on side $BC$ - point $A_1$ so that $AA_1 = AC = CC_1$. Prove that $3A_1C_1>BD$.

2008 Middle European Mathematical Olympiad, 3

Tags: geometry
Let $ ABC$ be an acute-angled triangle. Let $ E$ be a point such $ E$ and $ B$ are on distinct sides of the line $ AC,$ and $ D$ is an interior point of segment $ AE.$ We have $ \angle ADB \equal{} \angle CDE,$ $ \angle BAD \equal{} \angle ECD,$ and $ \angle ACB \equal{} \angle EBA.$ Prove that $ B, C$ and $ E$ lie on the same line.

2007 iTest Tournament of Champions, 5

Tags: ratio , geometry
Acute triangle $ABC$ has altitudes $AD$, $BE$, and $CF$. Point $D$ is projected onto $AB$ and $AC$ to points $D_c$ and $D_b$ respectively. Likewise, $E$ is projected to $E_a$ on $BC$ and $E_c$ on $AB$, and $F$ is projected to $F_a$ on $BC$ and $F_b$ on $AC$. Lines $D_bD_c$, $E_cE_a$, $F_aF_b$ bound a triangle of area $T_1$, and lines $E_cF_b$, $D_bE_a$, $F_aD_c$ bound a triangle of area $T_2$. What is the smallest possible value of the ratio $T_2/T_1$?

2016 Iran MO (3rd Round), 1

Tags: geometry
In triangle $ABC$ , $w$ is a circle which passes through $B,C$ and intersects $AB,AC$ at $E,F$ respectively. $BF,CE$ intersect the circumcircle of $ABC$ at $B',C'$ respectively. Let $A'$ be a point on $BC$ such that $\angle C'A'B=\angle B'A'C$ . Prove that if we change $w$, then all the circumcircles of triangles $A'B'C'$ passes through a common point.

2000 All-Russian Olympiad, 3

A convex pentagon $ABCDE$ is given in the coordinate plane with all vertices in lattice points. Prove that there must be at least one lattice point in the pentagon determined by the diagonals $AC$, $BD$, $CE$, $DA$, $EB$ or on its boundary.

2012 Kosovo National Mathematical Olympiad, 2

Tags: geometry
The bisector of acute angle $\alpha$ of the right triangle $ABC$ splits the side $a$ in two segments with lengths $m$ and $n$. Find the acute angle $\beta$ and the lenths of the other two sides by knowing $m$ and $n$.

1996 Spain Mathematical Olympiad, 6

A regular pentagon is constructed externally on each side of a regular pentagon of side $1$. The figure is then folded and the two edges of the external pentagons meeting at each vertex of the original pentagon are glued together. Find the volume of water that can be poured into the obtained container.

1986 Dutch Mathematical Olympiad, 4

The lines $a$ and $b$ are parallel and the point $A$ lies on $a$. One chooses one circle $\gamma$ through A tangent to $b$ at $B$. $a$ intersects $\gamma$ for the second time at $T$. The tangent line at $T$ of $\gamma$ is called $t$. Prove that independently of the choice of $\gamma$, there is a fixed point $P$ such that $BT$ passes through $P$. Prove that independently of the choice of $\gamma$, there is a fixed circle $\delta$ such that $t$ is tangent to $\delta$.

1979 AMC 12/AHSME, 23

The edges of a regular tetrahedron with vertices $A ,~ B,~ C$, and $D$ each have length one. Find the least possible distance between a pair of points $P$ and $Q$, where $P$ is on edge $AB$ and $Q$ is on edge $CD$. $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{3}{4}\qquad\textbf{(C) }\frac{\sqrt{2}}{2}\qquad\textbf{(D) }\frac{\sqrt{3}}{2}\qquad\textbf{(E) }\frac{\sqrt{3}}{3}$ [asy] size(150); import patterns; pair D=(0,0),C=(1,-1),B=(2.5,-0.2),A=(1,2),AA,BB,CC,DD,P,Q,aux; add("hatch",hatch()); //AA=new A and etc. draw(rotate(100,D)*(A--B--C--D--cycle)); AA=rotate(100,D)*A; BB=rotate(100,D)*D; CC=rotate(100,D)*C; DD=rotate(100,D)*B; aux=midpoint(AA--BB); draw(BB--DD); P=midpoint(AA--aux); aux=midpoint(CC--DD); Q=midpoint(CC--aux); draw(AA--CC,dashed); dot(P); dot(Q); fill(DD--BB--CC--cycle,pattern("hatch")); label("$A$",AA,W); label("$B$",BB,S); label("$C$",CC,E); label("$D$",DD,N); label("$P$",P,S); label("$Q$",Q,E); //Credit to TheMaskedMagician for the diagram [/asy]

2011 AMC 10, 17

In the given circle, the diameter $\overline{EB}$ is parallel to $\overline{DC}$, and $\overline{AB}$ is parallel to $\overline{ED}$. The angles $AEB$ and $ABE$ are in the ratio $4:5$. What is the degree measure of angle $BCD$? [asy] unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; real r=3; pair A=(-3cos(80),-3sin(80)); pair D=(3cos(80),3sin(80)), C=(-3cos(80),3sin(80)); pair O=(0,0), E=(-3,0), B=(3,0); path outer=Circle(O,r); draw(outer); draw(E--B); draw(E--A); draw(B--A); draw(E--D); draw(C--D); draw(B--C); pair[] ps={A,B,C,D,E,O}; dot(ps); label("$A$",A,N); label("$B$",B,NE); label("$C$",C,S); label("$D$",D,S); label("$E$",E,NW); label("$$",O,N);[/asy] $ \textbf{(A)}\ 120 \qquad \textbf{(B)}\ 125 \qquad \textbf{(C)}\ 130 \qquad \textbf{(D)}\ 135 \qquad \textbf{(E)}\ 140 $

1998 Rioplatense Mathematical Olympiad, Level 3, 6

Let $k$ be a fixed positive integer. For each $n = 1, 2,...,$ we will call [i]configuration [/i] of order $n$ any set of $kn$ points of the plane, which does not contain $3$ collinear, colored with $k$ given colors, so that there are $n$ points of each color. Determine all positive integers $n$ with the following property: in each configuration of order $n$, it is possible to select three points of each color, such that the $k$ triangles with vertices of the same color that are determined are disjoint in pairs.

Durer Math Competition CD Finals - geometry, 2008.D1

Given a square grid where the distance between two adjacent grid points is $1$. Can the distance between two grid points be $\sqrt5, \sqrt6, \sqrt7$ or $\sqrt{2007}$ ?

2011 Morocco National Olympiad, 4

Let $ABC$ be a triangle with area $1$ and $P$ the middle of the side $[BC]$. $M$ and $N$ are two points of $[AB]-\left \{ A,B \right \} $ and $[AC]-\left \{ A,C \right \}$ respectively such that $AM=2MB$ and$CN=2AN$. The two lines $(AP)$ and $(MN)$ intersect in a point $D$. Find the area of the triangle $ADN$.

2018 ELMO Shortlist, 5

Tags: geometry
Let scalene triangle $ABC$ have altitudes $AD, BE, CF$ and circumcenter $O$. The circumcircles of $\triangle ABC$ and $\triangle ADO$ meet at $P \ne A$. The circumcircle of $\triangle ABC$ meets lines $PE$ at $X \ne P$ and $PF$ at $Y \ne P$. Prove that $XY \parallel BC$. [i]Proposed by Daniel Hu[/i]

2008 Greece Team Selection Test, 2

The bisectors of the angles $\angle{A},\angle{B},\angle{C}$ of a triangle $\triangle{ABC}$ intersect with the circumcircle $c_1(O,R)$ of $\triangle{ABC}$ at $A_2,B_2,C_2$ respectively.The tangents of $c_1$ at $A_2,B_2,C_2$ intersect each other at $A_3,B_3,C_3$ (the points $A_3,A$ lie on the same side of $BC$,the points $B_3,B$ on the same side of $CA$,and $C_3,C$ on the same side of $AB$).The incircle $c_2(I,r)$ of $\triangle{ABC}$ is tangent to $BC,CA,AB$ at $A_1,B_1,C_1$ respectively.Prove that $A_1A_2,B_1B_2,C_1C_2,AA_3,BB_3,CC_3$ are concurrent. [hide=Diagram][asy]import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -9.26871978147865, xmax = 19.467150423463277, ymin = -6.150626456647122, ymax = 10.10782642246474; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((1.0409487561836381,4.30054785243355)--(0.,0.)--(6.,0.)--cycle, aqaqaq); /* draw figures */ draw((1.0409487561836381,4.30054785243355)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.0409487561836381,4.30054785243355), uququq); draw(circle((3.,1.550104087253063), 3.376806580383107)); draw(circle((1.9303371951242874,1.5188413314630436), 1.5188413314630436)); draw((1.0226422135625703,7.734611112525813)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-1.2916762981259242,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-0.2820306621765219,2.344520485530311)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(5.212367857300808,4.101231513568902), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(3.,-1.8267024931300442), linetype("2 2")); draw((12.047991949367804,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0226422135625703,7.734611112525813)--(-1.2916762981259242,-1.8267024931300444)); draw((-1.2916762981259242,-1.8267024931300444)--(12.047991949367804,-1.8267024931300444)); draw((12.047991949367804,-1.8267024931300444)--(1.0226422135625703,7.734611112525813)); /* dots and labels */ dot((1.0409487561836381,4.30054785243355),linewidth(3.pt) + dotstyle); label("$A$", (0.5889800538632699,4.463280489351154), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.5723380089304358,-0.10096957139619551), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.233525986976863,0.06107480945873997), NE * labelscalefactor); label("$c_1$", (1.9663572911302232,5.111458012770896), NE * labelscalefactor); dot((3.,-1.8267024931300442),linewidth(3.pt) + dotstyle); label("$A_2$", (2.9386235762598374,-2.3155761097469805), NE * labelscalefactor); dot((5.212367857300808,4.101231513568902),linewidth(3.pt) + dotstyle); label("$B_2$", (5.315274495465561,4.274228711687063), NE * labelscalefactor); dot((-0.2820306621765219,2.344520485530311),linewidth(3.pt) + dotstyle); label("$C_2$", (-0.9234341674494632,2.6807922999468636), NE * labelscalefactor); dot((1.0226422135625703,7.734611112525813),linewidth(3.pt) + dotstyle); label("$A_3$", (1.1291279900463889,7.893219884113956), NE * labelscalefactor); dot((-1.2916762981259242,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$B_3$", (-1.8146782621516093,-1.4783468086631473), NE * labelscalefactor); dot((12.047991949367804,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$C_3$", (12.148145888182015,-1.6673985863272387), NE * labelscalefactor); dot((1.9303371951242874,1.5188413314630436),linewidth(3.pt) + dotstyle); label("$I$", (2.047379481557691,1.681518618008095), NE * labelscalefactor); dot((1.9303371951242878,0.),linewidth(3.pt) + dotstyle); label("$A_1$", (1.4532167517562602,-0.5600953171518461), NE * labelscalefactor); label("$c_2$", (1.5072315453745722,3.247947632939138), NE * labelscalefactor); dot((2.9254299438737803,2.666303492733126),linewidth(3.pt) + dotstyle); label("$B_1$", (2.8576013858323694,3.1129106488933584), NE * labelscalefactor); dot((0.45412477306806903,1.8761589424582812),linewidth(3.pt) + dotstyle); label("$C_1$", (0,2.3296961414278368), NE * labelscalefactor); dot((1.0559139088339535,1.4932847901569466),linewidth(3.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

2008 Balkan MO Shortlist, G6

On triangle $ABC$ the $AM$ ($M\in BC$) is median and $BB_1$ and $CC_1$ ($B_1 \in AC,C_1 \in AB$) are altitudes. The stright line $d$ is perpendicular to $AM$ at the point $A$ and intersect the lines $BB_1$ and $CC_1$ at the points $E$ and $F$ respectively. Let denoted with $\omega$ the circle passing through the points $E, M$ and $F$ and with $\omega_1$ and with $\omega_2$ the circles that are tangent to segment $EF$ and with $\omega$ at the arc $EF$ which is not contain the point $M$. If the points $P$ and $Q$ are intersections points for $\omega_1$ and $\omega_2$ then prove that the points $P, Q$ and $M$ are collinear.

1988 All Soviet Union Mathematical Olympiad, 464

$ABCD$ is a convex quadrilateral. The midpoints of the diagonals and the midpoints of $AB$ and $CD$ form another convex quadrilateral $Q$. The midpoints of the diagonals and the midpoints of $BC$ and $CA$ form a third convex quadrilateral $Q'$. The areas of $Q$ and $Q'$ are equal. Show that either $AC$ or $BD$ divides $ABCD$ into two parts of equal area.

1999 Harvard-MIT Mathematics Tournament, 3

Tags: geometry
In a cube with side length $6$, what is the volume of the tetrahedron formed by any vertex and the three vertices connected to that vertex by edges of the cube?

2013 Harvard-MIT Mathematics Tournament, 14

Consider triangle $ABC$ with $\angle A=2\angle B$. The angle bisectors from $A$ and $C$ intersect at $D$, and the angle bisector from $C$ intersects $\overline{AB}$ at $E$. If $\dfrac{DE}{DC}=\dfrac13$, compute $\dfrac{AB}{AC}$.

Indonesia MO Shortlist - geometry, g6.2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. [i]Fajar Yuliawan, Bandung[/i]

2004 Irish Math Olympiad, 3

Tags: geometry , vector
$AB$ is a chord of length $6$ of a circle centred at $O$ and of radius $5$. Let $PQRS$ denote the square inscribed in the sector $OAB$ such that $P$ is on the radius $OA$, $S$ is on the radius $OB$ and $Q$ and $R$ are points on the arc of the circle between $A$ and $B$. Find the area of $PQRS$.

2002 All-Russian Olympiad, 3

On a plane are given $6$ red, $6$ blue, and $6$ green points, such that no three of the given points lie on a line. Prove that the sum of the areas of the triangles whose vertices are of the same color does not exceed quarter the sum of the areas of all triangles with vertices in the given points.