This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1979 All Soviet Union Mathematical Olympiad, 282

The convex quadrangle is divided by its diagonals onto four triangles. The circles inscribed in those triangles are equal. Prove that the given quadrangle is a diamond.

1949-56 Chisinau City MO, 3

Prove that the number $N = 10 ...050...01$ (1, 49 zeros, 5 , 99 zeros, 1) is a not cube of an integer.

2021 AMC 12/AHSME Spring, 17

Trapezoid $ABCD$ has $\overline{AB} \parallel \overline{CD}$, $BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$, and let $P$ be the midpoint of $\overline{BD}$. GIven that $OP = 11$, the length $AD$ can be written in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m + n$? $\textbf{(A)}\: 65\qquad\textbf{(B)}\: 132\qquad\textbf{(C)}\: 157\qquad\textbf{(D)}\: 194\qquad\textbf{(E)}\: 215$

Kvant 2024, M2825

Tags: geometry
At the same time, three beetles with identical speeds began to crawl along the heights of an acute-angled non-isosceles triangle from its vertices. At some point, it turned out that the first and second beetles were on a circle inscribed in a triangle. Prove that at this moment the third beetle is also on this circle. [i]A. Kuznetsov[/i]

Novosibirsk Oral Geo Oly IX, 2021.5

Tags: pentagon , angle , geometry
The pentagon $ABCDE$ is inscribed in the circle. Line segments $AC$ and $BD$ intersect at point $K$. Line segment $CE$ touches the circumcircle of triangle $ABK$ at point $N$. Find the angle $CNK$ if $\angle ECD = 40^o.$

2020 AMC 10, 14

Tags: geometry
As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length $2$ so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region—inside the hexagon but outside all of the semicircles? [asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE); [/asy] $\textbf{(A)}\ 6\sqrt3-3\pi \qquad\textbf{(B)}\ \frac{9\sqrt3}{2}-2\pi \qquad\textbf{(C)}\ \frac{3\sqrt3}{2}-\frac{\pi}{3} \qquad\textbf{(D)}\ 3\sqrt3-\pi \\ \qquad\textbf{(E)}\ \frac{9\sqrt3}{2}-\pi$

2018 Singapore Junior Math Olympiad, 2

In $\vartriangle ABC, AB=AC=14 \sqrt2 , D$ is the midpoint of $CA$ and $E$ is the midpoint of $BD$. Suppose $\vartriangle CDE$ is similar to $\vartriangle ABC$. Find the length of $BD$.

2008 Sharygin Geometry Olympiad, 21

Tags: geometry
(A.Zaslavsky, B.Frenkin, 10--11) In a triangle, one has drawn perpendicular bisectors to its sides and has measured their segments lying inside the triangle. a) All three segments are equal. Is it true that the triangle is equilateral? b) Two segments are equal. Is it true that the triangle is isosceles? c) Can the segments have length 4, 4 and 3?

2019 Novosibirsk Oral Olympiad in Geometry, 7

Denote $X,Y$ two convex polygons, such that $X$ is contained inside $Y$. Denote $S (X)$, $P (X)$, $S (Y)$, $P (Y)$ the area and perimeter of the first and second polygons, respectively. Prove that $$ \frac{S(X)}{P(X)}<2 \frac{S(Y)}{P(Y)}.$$

2016 India Regional Mathematical Olympiad, 1

Tags: geometry
Let $ABC$ be an isosceles triangle with $AB=AC.$ Let $ \Gamma $ be its circumcircle and let $O$ be the centre of $ \Gamma $ . let $CO$ meet $ \Gamma$ in $D .$ Draw a line parallel to $AC$ thrugh $D.$ Let it intersect $AB$ at $E.$ Suppose $AE : EB=2:1$ .Prove that $ABC$ is an equilateral triangle.

2021 Dutch IMO TST, 4

Determine all positive integers $n$ with the following property: for each triple $(a, b, c)$ of positive real numbers there is a triple $(k, \ell, m)$ of non-negative integer numbers so that $an^k$, $bn^{\ell}$ and $cn^m$ are the lengths of the sides of a (non-degenerate) triangle shapes.

2013 Baltic Way, 13

All faces of a tetrahedron are right-angled triangles. It is known that three of its edges have the same length $s$. Find the volume of the tetrahedron.

2025 Harvard-MIT Mathematics Tournament, 8

Tags: geometry
Let $ABCD$ be an isosceles trapezoid such that $CD > AB = 4.$ Let $E$ be a point on line $CD$ such that $DE =2$ and $D$ lies between $E$ and $C.$ Let $M$ be the midpoint of $\overline{AE}.$ Given that points $A, B, C, D,$ and $M$ lie on a circle with radius $5,$ compute $MD.$

2021 Science ON all problems, 3

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$. \\ \\ [i](Vlad Robu)[/i]

2012 USAJMO, 1

Given a triangle $ABC$, let $P$ and $Q$ be points on segments $\overline{AB}$ and $\overline{AC}$, respectively, such that $AP=AQ$. Let $S$ and $R$ be distinct points on segment $\overline{BC}$ such that $S$ lies between $B$ and $R$, $\angle BPS=\angle PRS$, and $\angle CQR=\angle QSR$. Prove that $P,Q,R,S$ are concyclic (in other words, these four points lie on a circle).

2014 AMC 10, 15

In rectangle $ABCD$, $DC = 2CB$ and points $E$ and $F$ lie on $\overline{AB}$ so that $\overline{ED}$ and $\overline{FD}$ trisect $\angle ADC$ as shown. What is the ratio of the area of $\triangle DEF$ to the area of rectangle $ABCD$? [asy] draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle); draw((0, 0)--(sqrt(3)/3, 1)); draw((0, 0)--(sqrt(3), 1)); label("A", (0, 1), N); label("B", (2, 1), N); label("C", (2, 0), S); label("D", (0, 0), S); label("E", (sqrt(3)/3, 1), N); label("F", (sqrt(3), 1), N); [/asy] ${ \textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$

2006 AMC 10, 20

In rectangle $ ABCD$, we have $ A \equal{} (6, \minus{} 22)$, $ B \equal{} (2006,178)$, and $ D \equal{} (8,y)$, for some integer $ y$. What is the area of rectangle $ ABCD$? $ \textbf{(A) } 4000 \qquad \textbf{(B) } 4040 \qquad \textbf{(C) } 4400 \qquad \textbf{(D) } 40,000 \qquad \textbf{(E) } 40,400$

2006 Pre-Preparation Course Examination, 2

Tags: geometry
Using projective transformations prove the Pascal theorem (also find where the Pascal line intersects the circle).

2010 JBMO Shortlist, 1

$\textbf{Problem G1}$ Consider a triangle $ABC$ with $\angle ACB=90^{\circ}$. Let $F$ be the foot of the altitude from $C$. Circle $\omega$ touches the line segment $FB$ at point $P$, the altitude $CF$ at point $Q$ and the circumcircle of $ABC$ at point $R$. Prove that points $A, Q, R$ are collinear and $AP = AC$.

2002 Iran Team Selection Test, 7

$S_{1},S_{2},S_{3}$ are three spheres in $\mathbb R^{3}$ that their centers are not collinear. $k\leq8$ is the number of planes that touch three spheres. $A_{i},B_{i},C_{i}$ is the point that $i$-th plane touch the spheres $S_{1},S_{2},S_{3}$. Let $O_{i}$ be circumcenter of $A_{i}B_{i}C_{i}$. Prove that $O_{i}$ are collinear.

2021 XVII International Zhautykov Olympiad, #2

Tags: hexagon , geometry
In a convex cyclic hexagon $ABCDEF$, $BC=EF$ and $CD=AF$. Diagonals $AC$ and $BF$ intersect at point $Q,$ and diagonals $EC$ and $DF$ intersect at point $P.$ Points $R$ and $S$ are marked on the segments $DF$ and $BF$ respectively so that $FR=PD$ and $BQ=FS.$ [b]The segments[/b] $RQ$ and $PS$ intersect at point $T.$ Prove that the line $TC$ bisects the diagonal $DB$.

2017 BMT Spring, 10

Let $S$ be the set of points $A$ in the Cartesian plane such that the four points $A$, $(2, 3)$, $(-1, 0)$, and $(0, 6)$ form the vertices of a parallelogram. Let $P$ be the convex polygon whose vertices are the points in $S$. What is the area of $P$?

1988 Tournament Of Towns, (179) 1

Determine the ratio of the bases (parallel sides) of the trapezoid for which there exists a line with $6$ points of intersection with the diagonals, lateral sides and extended bases cut $5$ equal segments? ( E . G . Gotman)

2011 USAMTS Problems, 4

Let $ABCDEF$ and $ABC'D'E'F'$ be regular planar hexagons in three-dimensional space with side length $1$, such that $\angle EAE'=60^{\circ}$. Let $P$ be the convex polyhedron whose vertices are $A$, $B$, $C$, $C'$, $D$, $D'$, $E$, $E'$, $F$, and $F'$. (a) Find the radius $r$ of the largest sphere that can be enclosed in polyhedron $P$. (b) Let $S$ be a sphere enclosed in polyhedron $P$ with radius $r$ (as derived in part (a)). The set of possible centers of $S$ is a line segment $\overline{XY}$. Find the length $XY$.

Kyiv City MO Seniors 2003+ geometry, 2004.11.4

Given a rectangular parallelepiped $ABCDA_1B_1C_1D_1$. Let the points $E$ and $F$ be the feet of the perpendiculars drawn from point $A$ on the lines $A_1D$ and $A_1C$, respectively, and the points $P$ and $Q$ be the feet of the perpendiculars drawn from point $B_1$ on the lines $A_1C_1$ and $A_1C$, respectively. Prove that $\angle EFA = \angle PQB_1$