Found problems: 25757
2009 Purple Comet Problems, 14
Let $ABCD$ be a trapezoid with $AB$ parallel to $CD, AB$ has length $1,$ and $CD$ has length $41.$ Let points $X$ and $Y$ lie on sides $AD$ and $BC,$ respectively, such that $XY$ is parallel to $AB$ and $CD,$ and $XY$ has length $31.$ Let $m$ and $n$ be two relatively prime positive integers such that the ratio of the area of $ABYX$ to the area of $CDXY$ is $\tfrac{m}{n}.$ Find $m+2n.$
2006 Taiwan TST Round 1, 2
$ABCD$ is a cyclic quadrilateral. Lines $AB,CD$ intersect at $E$, lines $AD,BC$ intersect at $F$, and $EM$ and $FN$ are tangents to the circumcircle of $ABCD$. Two circles are constructed with $E,F$ their centers and $EM, FN$ their radii, respectively. $K$ is one of their intersections. Prove that $EK$ is perpendicular to $FK$.
2012 BMT Spring, Championship
[b]p1.[/b] If $n$ is a positive integer such that $2n+1 = 144169^2$, find two consecutive numbers whose squares add up to $n + 1$.
[b]p2.[/b] Katniss has an $n$-sided fair die which she rolls. If $n > 2$, she can either choose to let the value rolled be her score, or she can choose to roll a $n - 1$ sided fair die, continuing the process. What is the expected value of her score assuming Katniss starts with a $6$ sided die and plays to maximize this expected value?
[b]p3.[/b] Suppose that $f(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$, and that $f(1) = f(2) = f(3) = f(4) = f(5) = f(6) = 7$. What is $a$?
[b]p4.[/b] $a$ and $b$ are positive integers so that $20a+12b$ and $20b-12a$ are both powers of $2$, but $a+b$ is not. Find the minimum possible value of $a + b$.
[b]p5.[/b] Square $ABCD$ and rhombus $CDEF$ share a side. If $m\angle DCF = 36^o$, find the measure of $\angle AEC$.
[b]p6.[/b] Tom challenges Harry to a game. Tom first blindfolds Harry and begins to set up the game. Tom places $4$ quarters on an index card, one on each corner of the card. It is Harry’s job to flip all the coins either face-up or face-down using the following rules:
(a) Harry is allowed to flip as many coins as he wants during his turn.
(b) A turn consists of Harry flipping as many coins as he wants (while blindfolded). When he is happy with what he has flipped, Harry will ask Tom whether or not he was successful in flipping all the coins face-up or face-down. If yes, then Harry wins. If no, then Tom will take the index card back, rotate the card however he wants, and return it back to Harry, thus starting Harry’s next turn. Note that Tom cannot touch the coins after he initially places them before starting the game.
Assuming that Tom’s initial configuration of the coins weren’t all face-up or face-down, and assuming that Harry uses the most efficient algorithm, how many moves maximum will Harry need in order to win? Or will he never win?
PS. You had better use hide for answers.
1976 USAMO, 1
(a) Suppose that each square of a 4 x 7 chessboard is colored either black or white. Prove that with [i]any[/i] such coloring, the board must contain a rectangle (formed by the horizontal and vertical lines of the board) whose four distinct unit corner squares are all of the same color.
(b) Exhibit a black-white coloring of a 4 x6 board in which the four corner squares of every rectangle, as described above, are not all of the same color.
2002 Paraguay Mathematical Olympiad, 5
In a trapezoid $ABCD$, the side $DA$ is perpendicular to the bases $AB$ and $CD$. Also $AB=45$, $CD =20$, $BC =65$. Let $P$ be a point on the side $BC$ such that $BP=45$ and let $M$ be the midpoint of $DA$. Calculate the length of $PM$ .
2001 Dutch Mathematical Olympiad, 3
A wooden beam $EFGH$ $ABCD$ is with three cuts in $8$ smaller ones sawn beams. Each cut is parallel to one of the three pair of opposit sides. Each pair of saw cuts is shown perpendicular to each other. The smaller bars at the corners $A, C, F$ and $H$ have a capacity of $9, 12, 8, 24$ respectively.(The proportions in the picture are not correct!!). Calculate content of the entire bar.
[asy]
unitsize (0.5 cm);
pair A, B, C, D, E, F, G, H;
pair x, y, z;
x = (1,0.5);
y = (-0.8,0.8);
z = (0,1);
B = (0,0);
C = 5*x;
A = 3*y;
F = 4*z;
E = A + F;
G = C + F;
H = A + C + F;
fill(y--3*y--(3*y + z)--(y + z)--cycle, gray(0.8));
fill(2*x--5*x--(5*x + z)--(2*x + z)--cycle, gray(0.8));
fill((y + z)--(y + 4*z)--(y + 4*z + 2*x)--(4*z + 2*x)--(2*x + z)--z--cycle, gray(0.8));
fill((2*x + y + 4*z)--(2*x + 3*y + 4*z)--(5*x + 3*y + 4*z)--(5*x + y + 4*z)--cycle, gray(0.8));
draw(B--C--G--H--E--A--cycle);
draw(B--F);
draw(E--F);
draw(G--F);
draw(y--(y + 4*z)--(y + 4*z + 5*x));
draw(2*x--(2*x + 4*z)--(2*x + 4*z + 3*y));
draw((3*y + z)--z--(5*x + z));
label("$A$", A, SW);
label("$B$", B, S);
label("$C$", C, SE);
label("$E$", E, NW);
label("$F$", F, SE);
label("$G$", G, NE);
label("$H$", H, N);
[/asy]
1960 AMC 12/AHSME, 4
Each of two angles of a triangle is $60^{\circ}$ and the included side is $4$ inches. The area of the triangle, in square inches, is:
$ \textbf{(A) }8\sqrt{3}\qquad\textbf{(B) }8\qquad\textbf{(C) }4\sqrt{3}\qquad\textbf{(D) }4\qquad\textbf{(E) }2\sqrt{3} $
Kvant 2024, M2800
Let $ABCD$ be a parallelogram. Let $M$ be the midpoint of the arc $AC$ containing $B$ of the circumcircle of $ABC$ . Let $E$ be a point on segment $AD$ and $F$ a point on segment $CD$ such that $ME=MD=MF$. Show that $BMEF$ is cyclic.
[i]Proposed by A. Tereshin[/i]
2023 OMpD, 2
Let $ABCDE$ be a convex pentagon inscribed in a circle $\Gamma$, such that $AB = BC = CD$. Let $F$ and $G$ be the intersections of $BE$ with $AC$ and of $CE$ with $BD$, respectively. Show that:
a) $[ABC] = [FBCG]$
b) $\frac{[EFG]}{[EAD]} = \frac{BC}{AD}$
[b]Note: [/b] $[X]$ denotes the area of polygon $X$.
1979 VTRMC, 1
Show that the right circular cylinder of volume $V$ which has the least surface area is the one whose diameter is equal to its altitude. (The top and bottom are part of the surface.)
1993 ITAMO, 4
Let $P$ be a point in the plane of a triangle $ABC$, different from its circumcenter. Prove that the triangle whose vertices are the projections of $P$ on the perpendicular bisectors of the sides of $ABC$, is similar to $ABC$.
2007 Tournament Of Towns, 7
There are $100$ boxes, each containing either a red cube or a blue cube. Alex has a sum of money initially, and places bets on the colour of the cube in each box in turn. The bet can be anywhere from $0$ up to everything he has at the time. After the bet has been placed, the box is opened. If Alex loses, his bet will be taken away. If he wins, he will get his bet back, plus a sum equal to the bet. Then he moves onto the next box, until he has bet on the last one, or until he runs out of money. What is the maximum factor by which he can guarantee to increase his amount of money, if he knows that the exact number of blue cubes is
[list][b](a)[/b] $1$;
[b](b)[/b] some integer $k$, $1 < k \leq 100$.[/list]
2006 Pre-Preparation Course Examination, 1
Show that for a triangle we have \[ \max \{am_a,bm_b,cm_c\} \leq sR \] where $m_a$ denotes the length of median of side $BC$ and $s$ is half of the perimeter of the triangle.
2014 Contests, 3
From the point $P$ outside a circle $\omega$ with center $O$ draw the tangents $PA$ and $PB$ where $A$ and $B$ belong to $\omega$.In a random point $M$ in the chord $AB$ we draw the perpendicular to $OM$, which intersects $PA$ and $PB$ in $C$ and $D$. Prove that $M$ is the midpoint $CD$.
2022 LMT Fall, 2 World Cup
The World Cup, featuring $17$ teams from Europe and South America, as well as $15$ other teams that honestly don’t have a chance, is a soccer tournament that is held once every four years. As we speak, Croatia andMorocco are locked in a battle that has no significance whatsoever on the winner, but if you would like live score updates nonetheless, feel free to ask your proctor, who has no obligation whatsoever to provide them.
[b]p1.[/b] During the group stage of theWorld Cup, groups of $4$ teams are formed. Every pair of teams in a group play each other once. Each team earns $3$ points for each win and $1$ point for each tie. Find the greatest possible sum of the points of each team in a group.
[b]p2.[/b] In the semi-finals of theWorld Cup, the ref is bad and lets $11^2 = 121$ players per team go on the field at once. For a given team, one player is a goalie, and every other player is either a defender, midfielder, or forward. There is at least one player in each position. The product of the number of defenders, midfielders, and forwards is a mulitple of $121$. Find the number of ordered triples (number of defenders, number of midfielders, number of forwards) that satisfy these conditions.
[b]p3.[/b] Messi is playing in a game during the Round of $16$. On rectangular soccer field $ABCD$ with $AB = 11$, $BC = 8$, points $E$ and $F$ are on segment $BC$ such that $BE = 3$, $EF = 2$, and $FC = 3$. If the distance betweenMessi and segment $EF$ is less than $6$, he can score a goal. The area of the region on the field whereMessi can score a goal is $a\pi +\sqrt{b} +c$, where $a$, $b$, and $c$ are integers. Find $10000a +100b +c$.
[b]p4.[/b] The workers are building theWorld Cup stadium for the $2022$ World Cup in Qatar. It would take 1 worker working alone $4212$ days to build the stadium. Before construction started, there were 256 workers. However, each day after construction, $7$ workers disappear. Find the number of days it will take to finish building the stadium.
[b]p5.[/b] In the penalty kick shootout, $2$ teams each get $5$ attempts to score. The teams alternate shots and the team that scores a greater number of times wins. At any point, if it’s impossible for one team to win, even before both teams have taken all $5$ shots, the shootout ends and nomore shots are taken. If each team does take all $5$ shots and afterwards the score is tied, the shootout enters sudden death, where teams alternate taking shots until one team has a higher score while both teams have taken the same number of shots. If each shot has a $\frac12$ chance of scoring, the expected number of times that any team scores can be written as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1967 IMO Shortlist, 2
Let $ABCD$ be a regular tetrahedron. To an arbitrary point $M$ on one edge, say $CD$, corresponds the point $P = P(M)$ which is the intersection of two lines $AH$ and $BK$, drawn from $A$ orthogonally to $BM$ and from $B$ orthogonally to $AM$. What is the locus of $P$ when $M$ varies ?
2013 LMT, Team Round
[b]p1.[/b] Alan leaves home when the clock in his cardboard box says $7:35$ AM and his watch says $7:41$ AM. When he arrives at school, his watch says $7:47$ AM and the $7:45$ AM bell rings. Assuming the school clock, the watch, and the home clock all go at the same rate, how many minutes behind the school clock is the home clock?
[b]p2.[/b] Compute $$\left( \frac{2012^{2012-2013} + 2013}{2013} \right) \times 2012.$$
Express your answer as a mixed number.
[b]p3.[/b] What is the last digit of $$2^{3^{4^{5^{6^{7^{8^{9^{...^{2013}}}}}}}}} ?$$
[b]p4.[/b] Let $f(x)$ be a function such that $f(ab) = f(a)f(b)$ for all positive integers $a$ and $b$. If $f(2) = 3$ and $f(3) = 4$, find $f(12)$.
[b]p5.[/b] Circle $X$ with radius $3$ is internally tangent to circle $O$ with radius $9$. Two distinct points $P_1$ and $P_2$ are chosen on $O$ such that rays $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ are tangent to circle $X$. What is the length of line segment $P_1P_2$?
[b]p6.[/b] Zerglings were recently discovered to use the same $24$-hour cycle that we use. However, instead of making $12$-hour analog clocks like humans, Zerglings make $24$-hour analog clocks. On these special analog clocks, how many times during $ 1$ Zergling day will the hour and minute hands be exactly opposite each other?
[b]p7.[/b] Three Small Children would like to split up $9$ different flavored Sweet Candies evenly, so that each one of the Small Children gets $3$ Sweet Candies. However, three blind mice steal one of the Sweet Candies, so one of the Small Children can only get two pieces. How many fewer ways are there to split up the candies now than there were before, assuming every Sweet Candy is different?
[b]p8.[/b] Ronny has a piece of paper in the shape of a right triangle $ABC$, where $\angle ABC = 90^o$, $\angle BAC = 30^o$, and $AC = 3$. Holding the paper fixed at $A$, Ronny folds the paper twice such that after the first fold, $\overline{BC}$ coincides with $\overline{AC}$, and after the second fold, $C$ coincides with $A$. If Ronny initially marked $P$ at the midpoint of $\overline{BC}$, and then marked $P'$ as the end location of $P$ after the two folds, find the length of $\overline{PP'}$ once Ronny unfolds the paper.
[b]p9.[/b] How many positive integers have the same number of digits when expressed in base $3$ as when expressed in base $4$?
[b]p10.[/b] On a $2 \times 4$ grid, a bug starts at the top left square and arbitrarily moves north, south, east, or west to an adjacent square that it has not already visited, with an equal probability of moving in any permitted direction. It continues to move in this way until there are no more places for it to go. Find the expected number of squares that it will travel on. Express your answer as a mixed number.
PS. You had better use hide for answers.
1994 AIME Problems, 7
For certain ordered pairs $(a,b)$ of real numbers, the system of equations \begin{eqnarray*} && ax+by =1\\ &&x^2+y^2=50\end{eqnarray*} has at least one solution, and each solution is an ordered pair $(x,y)$ of integers. How many such ordered pairs $(a,b)$ are there?
2019 Taiwan TST Round 2, 2
Let $O$ be the circumcentre, and $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. Let $P$ be an arbitrary point on $\Omega$, distinct from $A$, $B$, $C$, and their antipodes in $\Omega$. Denote the circumcentres of the triangles $AOP$, $BOP$, and $COP$ by $O_A$, $O_B$, and $O_C$, respectively. The lines $\ell_A$, $\ell_B$, $\ell_C$ perpendicular to $BC$, $CA$, and $AB$ pass through $O_A$, $O_B$, and $O_C$, respectively. Prove that the circumcircle of triangle formed by $\ell_A$, $\ell_B$, and $\ell_C$ is tangent to the line $OP$.
V Soros Olympiad 1998 - 99 (Russia), 9.6
On the coordinate plane, draw all points $M(x, y)$, whose coordinates satisfy the equation:
$$ |x-y| + |1-x| + |y|=1 $$
2017 Oral Moscow Geometry Olympiad, 6
Around triangle $ABC$ with acute angle C is circumscribed a circle. On the arc $AB$, which does not contain point $C$, point $D$ is chosen. Point $D'$ is symmetric on point $D$ with respect to line $AB$. Straight lines $AD'$ and $BD'$ intersect segments $BC$ and $AC$ at points $E$ and $F$. Let point $C$ move along its arc $AB$. Prove that the center of the circumscribed circle of a triangle $CEF$ moves on a straight line.
2024 Czech-Polish-Slovak Junior Match, 2
How many non-empty subsets of $\{1,2,\dots,11\}$ are there with the property that the product of its elements is the cube of an integer?
2013 Romanian Master of Mathematics, 4
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
1980 Bundeswettbewerb Mathematik, 2
In a triangle $ABC$, the bisectors of angles $A$ and $B$ meet the opposite sides of the triangle at points $D$ and $E$, respectively. A point $P$ is arbitrarily chosen on the line $DE$. Prove that the distance of $P$ from line $AB$ equals the sum or the difference of the distances of $P$ from lines $AC$ and $BC$.
2017 Baltic Way, 11
Let $H$ and $I$ be the orthocenter and incenter, respectively, of an acute-angled triangle $ABC$. The circumcircle of the triangle $BCI$ intersects the segment $AB$ at the point $P$ different from $B$. Let $K$ be the projection of $H$ onto $AI$ and $Q$ the reflection of $P$ in $K$. Show that $B$, $H$ and $Q$ are collinear.
[i]Proposed by Mads Christensen, Denmark[/i]