Found problems: 25757
2024 Kyiv City MO Round 2, Problem 4
Let $BD$ be an altitude of $\triangle ABC$ with $AB < BC$ and $\angle B > 90^\circ$. Let $M$ be the midpoint of $AC$, and point $K$ be symmetric to point $D$ with respect to point $M$. A perpendicular drawn from point $M$ to the line $BC$ intersects line $AB$ at point $L$. Prove that $\angle MBL = \angle MKL$.
[i]Proposed by Oleksandra Yakovenko[/i]
EMCC Accuracy Rounds, 2015
[b]p1.[/b] A number of Exonians took a math test. If all of their scores were positive integers and the mean of their scores was $8.6$, find the minimum possible number of students.
[b]p2.[/b] Find the least composite positive integer that is not divisible by any of $3, 4$, and $5$.
[b]p3.[/b] Five checkers are on the squares of an $8\times 8$ checkerboard such that no two checkers are in the same row or the same column. How many squares on the checkerboard share neither a row nor a column with any of the five checkers?
[b]p4.[/b] Let the operation $x@y$ be $y - x$. Compute $((... ((1@2)@3)@ ...@ 2013)@2014)@2015$.
[b]p5.[/b] In a town, each family has either one or two children. According to a recent survey, $40\%$ of the children in the town have a sibling. What fraction of the families in the town have two children?
[b]p6.[/b] Equilateral triangles $ABE$, $BCF$, $CDG$ and $DAH$ are constructed outside the unit square $ABCD$. Eliza wants to stand inside octagon $AEBFCGDH$ so that she can see every point in the octagon without being blocked by an edge. What is the area of the region in which she can stand?
[b]p7.[/b] Let $S$ be the string $0101010101010$. Determine the number of substrings containing an odd number of $1$'s. (A substring is defined by a pair of (not necessarily distinct) characters of the string and represents the characters between, inclusively, the two elements of the string.)
[b]p8.[/b] Let the positive divisors of $n$ be $d_1, d_2, ...$ in increasing order. If $d_6 = 35$, determine the minimum possible value of $n$.
[b]p9.[/b] The unit squares on the coordinate plane that have four lattice point vertices are colored black or white, as on a chessboard, shown on the diagram below.
[img]https://cdn.artofproblemsolving.com/attachments/6/4/f400d52ae9e8131cacb90b2de942a48662ea8c.png[/img]
For an ordered pair $(m, n)$, let $OXZY$ be the rectangle with vertices $O = (0, 0)$, $X = (m, 0)$, $Z = (m, n)$ and $Y = (0, n)$. How many ordered pairs $(m, n)$ of nonzero integers exist such that rectangle $OXZY$ contains exactly $32$ black squares?
[b]p10.[/b] In triangle $ABC$, $AB = 2BC$. Given that $M$ is the midpoint of $AB$ and $\angle MCA = 60^o$, compute $\frac{CM}{AC}$ .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 USA IMO Team Selection Test, 4
Find all integers $n \geq 2$ for which there exists a sequence of $2n$ pairwise distinct points $(P_1, \dots, P_n, Q_1, \dots, Q_n)$ in the plane satisfying the following four conditions: [list=i] [*]no three of the $2n$ points are collinear;
[*] $P_iP_{i+1} \ge 1$ for all $i = 1, 2, \dots ,n$, where $P_{n+1}=P_1$;
[*] $Q_iQ_{i+1} \ge 1$ for all $i = 1, 2, \dots, n$, where $Q_{n+1} = Q_1$; and
[*] $P_iQ_j \le 1$ for all $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, n$.[/list]
[i]Ray Li[/i]
2021 Serbia JBMO TSTs, 4
On sides $AB$ and $AC$ of an acute triangle $\Delta ABC$, with orthocenter $H$ and circumcenter $O$, are given points $P$ and $Q$ respectively such that $APHQ$ is a parallelogram. Prove the following equality:
\begin{align*}
\frac{PB\cdot PQ}{QA\cdot QO}=2
\end{align*}
2023 Korea Junior Math Olympiad, 2
Quadrilateral $ABCD (\overline{AD} < \overline{BC})$ is inscribed in a circle, and $H(\neq A, B)$ is a point on segment $AB.$ The circumcircle of triangle $BCH$ meets $BD$ at $E(\neq B)$ and line $HE$ meets $AD$ at $F$. The circle passes through $C$ and tangent to line $BD$ at $E$ meets $EF$ at $G(\neq E).$ Prove that $\angle DFG = \angle FCG.$
2012 Harvard-MIT Mathematics Tournament, 6
Triangle $ABC$ is an equilateral triangle with side length $1$. Let $X_0,X_1,... $ be an infinite sequence of points such that the following conditions hold:
$\bullet$ $X_0$ is the center of $ABC$
$\bullet$ For all $i \ge 0$, $X_{2i+1}$ lies on segment $AB$ and $X_{2i+2}$ lies on segment $AC$.
$\bullet$ For all $i \ge 0$, $\angle X_iX_{i+1}X_{i+2} = 90^o.$
$\bullet$ For all $i \ge 1$, $X_{i+2}$ lies in triangle $AX_iX_{i+1}$.
Find the maximum possible value of $\sum^{\infty}_{i=0}|X_iX_{i+1}|$, where $|PQ|$ is the length of line segment $PQ$.
2010 Chile National Olympiad, 5
Consider a line $ \ell $ in the plane and let $ B_1, B_2, B_3 $ be different points in $ \ell$. Let $ A $ be a point that is not in $ \ell$. Show that there is $ P, Q $ in $ {B_1, B_2, B_3} $ with $ P \ne Q $ so that the distance from $ A $ to $ \ell$ is greater than the distance from $ P $ to the line that passes through $ A $ and $ Q $.
2015 Azerbaijan Team Selection Test, 1
Let $\omega$ be the circumcircle of an acute-angled triangle $ABC$. The lines tangent to $\omega$ at the points $A$ and $B$ meet at $K$. The line passing through $K$ and parallel to $BC$ intersects the side $AC$ at $S$. Prove that $BS=CS$
2010 Dutch IMO TST, 4
Let $ABCD$ be a square with circumcircle $\Gamma_1$. Let $P$ be a point on the arc $AC$ that also contains $B$. A circle $\Gamma_2$ touches $\Gamma_1$ in $P$ and also touches the diagonal $AC$ in $Q$. Let $R$ be a point on $\Gamma_2$ such that the line $DR$ touches $\Gamma_2$. Proof that $|DR| = |DA|$.
2002 China Team Selection Test, 2
$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that:
\[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1
\]
2020 LIMIT Category 1, 2
In a square $ABCD$ of side $2$ units, $E$ is the midpoint of $AD$ and $F$ on $BE$ such that $CF\perp BE$, then the quadrilateral $CDEF$ has an area of
(A)$2$
(B)$2.2$
(C)$\sqrt{5}$
(D)None of these
2004 Tournament Of Towns, 4
A circle with the center $I$ is entirely inside of a circle with center $O$. Consider all possible chords $AB$ of the larger circle which are tangent to the smaller one. Find the locus of the centers of the circles circumscribed about the triangle $AIB$.
2008 Brazil Team Selection Test, 4
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$, $ n\in\mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.
[b]IMO Shortlist 2007 Problem C5 as it appears in the official booklet:[/b]
In the Cartesian coordinate plane define the strips $ S_n \equal{} \{(x,y)|n\le x < n \plus{} 1\}$ for every integer $ n.$ Assume each strip $ S_n$ is colored either red or blue, and let $ a$ and $ b$ be two distinct positive integers. Prove that there exists a rectangle with side length $ a$ and $ b$ such that its vertices have the same color.
([i]Edited by Orlando Döhring[/i])
[i]Author: Radu Gologan and Dan Schwarz, Romania[/i]
MathLinks Contest 7th, 6.3
Let $ \Omega$ be the circumcircle of triangle $ ABC$. Let $ D$ be the point at which the incircle of $ ABC$ touches its side $ BC$. Let $ M$ be the point on $ \Omega$ such that the line $ AM$ is parallel to $ BC$. Also, let $ P$ be the point at which the circle tangent to the segments $ AB$ and $ AC$ and to the circle $ \Omega$ touches $ \Omega$. Prove that the points $ P$, $ D$, $ M$ are collinear.
2007 Princeton University Math Competition, 5
$A$ and $B$ are on a circle of radius $20$ centered at $C$, and $\angle ACB = 60^\circ$. $D$ is chosen so that $D$ is also on the circle, $\angle ACD = 160^\circ$, and $\angle DCB = 100^\circ$. Let $E$ be the intersection of lines $AC$ and $BD$. What is $DE$?
2020 Caucasus Mathematical Olympiad, 7
In $\triangle ABC$ with $AB\neq{AC}$ let $M$ be the midpoint of $AB$, let $K$ be the midpoint of the arc $BAC$ in the circumcircle of $\triangle ABC$, and let the perpendicular bisector of $AC$ meet the bisector of $\angle BAC$ at $P$ . Prove that $A, M, K, P$ are concyclic.
2005 Cuba MO, 8
Find the smallest real number $A$, such that there are two different triangles, with integer sidelengths and so that the area of each be $A$.
2020 Swedish Mathematical Competition, 2
The medians of the sides $AC$ and $BC$ in the triangle $ABC$ are perpendicular to each other. Prove that $\frac12 <\frac{|AC|}{|BC|}<2$.
2010 Bulgaria National Olympiad, 3
Let $k$ be the circumference of the triangle $ABC.$ The point $D$ is an arbitrary point on the segment $AB.$ Let $I$ and $J$ be the centers of the circles which are tangent to the side $AB,$ the segment $CD$ and the circle $k.$ We know that the points $A, B, I$ and $J$ are concyclic. The excircle of the triangle $ABC$ is tangent to the side $AB$ in the point $M.$ Prove that $M \equiv D.$
2011 Sharygin Geometry Olympiad, 2
In triangle $ABC, \angle B = 2\angle C$. Points $P$ and $Q$ on the medial perpendicular to $CB$ are such that $\angle CAP = \angle PAQ = \angle QAB = \frac{\angle A}{3}$ . Prove that $Q$ is the circumcenter of triangle $CPB$.
1992 Iran MO (2nd round), 1
Let $ABC$ be a right triangle with $\angle A=90^\circ.$ The bisectors of the angles $B$ and $C$ meet each other in $I$ and meet the sides $AC$ and $AB$ in $D$ and $E$, respectively. Prove that $S_{BCDE}=2S_{BIC},$ where $S$ is the area function.
[asy]
import graph; size(200); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen ttqqcc = rgb(0.2,0,0.8); pen qqwuqq = rgb(0,0.39,0); pen xdxdff = rgb(0.49,0.49,1); pen fftttt = rgb(1,0.2,0.2); pen ccccff = rgb(0.8,0.8,1);
draw((1.89,4.08)--(1.89,4.55)--(1.42,4.55)--(1.42,4.08)--cycle,qqwuqq); draw((1.42,4.08)--(7.42,4.1),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(1.42,4.08),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(7.42,4.1),ttqqcc+linewidth(1.6pt)); draw((1.4,10.08)--(4,4.09),fftttt+linewidth(1.2pt)); draw((7.42,4.1)--(1.41,6.24),fftttt+linewidth(1.2pt)); draw((1.41,6.24)--(4,4.09),ccccff+linetype("5pt 5pt"));
dot((1.42,4.08),ds); label("$A$", (1.1,3.66),NE*lsf); dot((7.42,4.1),ds); label("$B$", (7.15,3.75),NE*lsf); dot((1.4,10.08),ds); label("$C$", (1.49,10.22),NE*lsf); dot((4,4.09),ds); label("$E$", (3.96,3.46),NE*lsf); dot((1.41,6.24),ds); label("$D$", (0.9,6.17),NE*lsf); dot((3.37,5.54),ds); label("$I$", (3.45,5.69),NE*lsf); clip((-6.47,-7.49)--(-6.47,11.47)--(16.06,11.47)--(16.06,-7.49)--cycle); [/asy]
2023 Novosibirsk Oral Olympiad in Geometry, 3
The rectangle is cut into $10$ squares as shown in the figure on the right. Find its sides if the side of the smallest square is $3$.[img]https://cdn.artofproblemsolving.com/attachments/e/5/1fe3a0e41b2d3182338a557d3d44ff5ef9385d.png[/img]
2022/2023 Tournament of Towns, P1
A right-angled triangle has an angle equal to $30^\circ.$ Prove that one of the bisectors of the triangle is twice as short as another one.
[i]Egor Bakaev[/i]
1945 Moscow Mathematical Olympiad, 098
A right triangle $ABC$ moves along the plane so that the vertices $B$ and $C$ of the triangle’s acute angles slide along the sides of a given right angle. Prove that point $A$ fills in a line segment and find its length.
2013 China Team Selection Test, 1
Let $p$ be a prime number and $a, k$ be positive integers such that $p^a<k<2p^a$. Prove that there exists a positive integer $n$ such that \[n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.\]