This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2009 AMC 8, 22

How many whole numbers between 1 and 1000 do [b]not[/b] contain the digit 1? $ \textbf{(A)}\ 512 \qquad \textbf{(B)}\ 648 \qquad \textbf{(C)}\ 720 \qquad \textbf{(D)}\ 728 \qquad \textbf{(E)}\ 800$

2015 India IMO Training Camp, 1

Tags: geometry
Consider a fixed circle $\Gamma$ with three fixed points $A, B,$ and $C$ on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \not\in\{A, B, C\}$ on $\Gamma$, let $M$ be the point on the segment $CP$ such that $CM =\lambda\cdot CP$ . Let $Q$ be the second point of intersection of the circumcircles of the triangles $AMP$ and $BMC$. Prove that as $P$ varies, the point $Q$ lies on a fixed circle. [i]Proposed by Jack Edward Smith, UK[/i]

1997 Pre-Preparation Course Examination, 2

An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that \[ \angle AA_1A_2 \equal{} \angle AA_2A_1 \equal{} \angle BB_1B_2 \equal{} \angle BB_2B_1 \equal{} \angle CC_1C_2 \equal{} \angle CC_2C_1.\] The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.

2001 Putnam, 4

Triangle $ABC$ has area $1$. Points $E$, $F$, and $G$ lie, respectively, on sides $BC$, $CA$, and $AB$ such that $AE$ bisects $BF$ at point $R$, $BF$ bisects $CG$ at point $S$, and $CG$ bisects $AE$ at point $T$. Find the area of the triangle $RST$.

1969 Leningrad Math Olympiad, grade 6

[b]6.1 / 7.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks. [b]6.2 [/b] The natural numbers are arranged in a $3 \times 3$ table. Kolya and Petya crossed out 4 numbers each. It turned out that the sum of the numbers crossed out by Petya is three times the sum numbers crossed out by Kolya. What number is left uncrossed? $$\begin{tabular}{|c|c|c|}\hline 4 & 12 & 8 \\ \hline 13 & 24 & 14 \\ \hline 7 & 5 & 23 \\ \hline \end{tabular} $$ [b]6.3 [/b] Misha and Sasha left at noon on bicycles from city A to city B. At the same time, I left from B to A Vanya. All three travel at constant but different speeds. At one o'clock Sasha was exactly in the middle between Misha and Vanya, and at half past one Vanya was in the middle between Misha and Sasha. When Misha will be exactly in the middle between Sasha and Vanya? [b]6.4[/b] There are $35$ piles of nuts on the table. Allowed to add one nut at a time to any $23$ piles. Prove that by repeating this operation, you can equalize all the heaps. [b]6.5[/b] There are $64$ vertical stripes on the round drum, and each stripe you need to write down a six-digit number from digits $1$ and $2$ so that all the numbers were different and any two adjacent ones differed in exactly one discharge. How to do this? [b]6.6 / 7.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].

1973 IMO Longlists, 7

Given a tetrahedron $ABCD$. Let $x = AB \cdot CD, y = AC \cdot BD$ and $z = AD\cdot BC$. Prove that there exists a triangle with the side lengths $x, y$ and $z$.

2005 AMC 8, 9

Tags: geometry
In quadrilateral $ ABCD$, sides $ \overline{AB}$ and $ \overline{BC}$ both have length 10, sides $ \overline{CD}$ and $ \overline{DA}$ both have length 17, and the measure of angle $ ADC$ is $ 60^\circ$. What is the length of diagonal $ \overline{AC}$? [asy]draw((0,0)--(17,0)); draw(rotate(301, (17,0))*(0,0)--(17,0)); picture p; draw(p, (0,0)--(0,10)); draw(p, rotate(115, (0,10))*(0,0)--(0,10)); add(rotate(3)*p); draw((0,0)--(8.25,14.5), linetype("8 8")); label("$A$", (8.25, 14.5), N); label("$B$", (-0.25, 10), W); label("$C$", (0,0), SW); label("$D$", (17, 0), E);[/asy] $ \textbf{(A)}\ 13.5\qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 15.5\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 18.5 $

2017 Oral Moscow Geometry Olympiad, 2

Given pyramid with base $n-gon$. How many maximum number of edges can be perpendicular to base?

2012 India IMO Training Camp, 1

Let $ABCD$ be a trapezium with $AB\parallel CD$. Let $P$ be a point on $AC$ such that $C$ is between $A$ and $P$; and let $X, Y$ be the midpoints of $AB, CD$ respectively. Let $PX$ intersect $BC$ in $N$ and $PY$ intersect $AD$ in $M$. Prove that $MN\parallel AB$.

Denmark (Mohr) - geometry, 2003.1

In a right-angled triangle, the sum $a + b$ of the sides enclosing the right angle equals $24$ while the length of the altitude $h_c$ on the hypotenuse $c$ is $7$. Determine the length of the hypotenuse.

1990 Baltic Way, 8

It is known that for any point $P$ on the circumcircle of a triangle $ABC$, the orthogonal projections of $P$ onto $AB,BC,CA$ lie on a line, called a [i]Simson line[/i] of $P$. Show that the Simson lines of two diametrically opposite points $P_1$ and $P_2$ are perpendicular.

2013 BMT Spring, 14

Tags: geometry , incircle
Triangle $ABC$ has incircle $O$ that is tangent to $AC$ at $D$. Let $M$ be the midpoint of $AC$. $E$ lies on $BC$ so that line $AE$ is perpendicular to $BO$ extended. If $AC = 2013$, $AB = 2014$, $DM = 249$, find $CE$.

2012 Online Math Open Problems, 44

Given a set of points in space, a [i]jump[/i] consists of taking two points, $P$ and $Q,$ and replacing $P$ with the reflection of $P$ over $Q$. Find the smallest number $n$ such that for any set of $n$ lattice points in $10$-dimensional-space, it is possible to perform a finite number of jumps so that some two points coincide. [i]Author: Anderson Wang[/i]

2010 JBMO Shortlist, 3

Tags: geometry
Consider a triangle ${ABC}$ and let ${M}$ be the midpoint of the side ${BC.}$ Suppose ${\angle MAC=\angle ABC}$ and ${\angle BAM=105^{\circ}.}$ Find the measure of ${\angle ABC}$.

2024 Sharygin Geometry Olympiad, 8.3

Tags: geometry
Let $AD$ be the altitude of an acute-angled triangle $ABC$ and $A'$ be the point on its circumcircle opposite to $A$. A point $P$ lies on the segment $AD$, and points $X$, $Y$ lie on the segments $AB$, $AC$ respectively in such a way that $\angle CBP = \angle ADY$, $\angle BCP = \angle ADX$. Let $PA'$ meet $BC$ at point $T$. Prove that $D$, $X$, $Y$, $T$ are concyclic.

2021 Ukraine National Mathematical Olympiad, 4

Let $O, I, H$ be the circumcenter, the incenter, and the orthocenter of $\triangle ABC$. The lines $AI$ and $AH$ intersect the circumcircle of $\triangle ABC$ for the second time at $D$ and $E$, respectively. Prove that if $OI \parallel BC$, then the circumcenter of $\triangle OIH$ lies on $DE$. (Fedir Yudin)

2009 Peru IMO TST, 3

Tags: geometry
Let $ ABCDEF$ be a convex hexagon that has no pair of parallel sides. It is known that, for every point $ P$ inside the hexagon, the sum: \[ \text{Area}[ABP]\plus{}\text{Area}[CDP]\plus{}\text{Area}[EFP]\] has a constant value. Prove that the triangles $ ACE$ and $ BDF$ have the same barycentre. _____________________________________ This problem was proposed by Israel Diaz. $ Tipe$

2009 Argentina Team Selection Test, 3

Let $ ABC$ be a triangle, $ B_1$ the midpoint of side $ AB$ and $ C_1$ the midpoint of side $ AC$. Let $ P$ be the point of intersection ($ \neq A$) of the circumcircles of triangles $ ABC_1$ and $ AB_1C$. Let $ Q$ be the point of intersection ($ \neq A$) of the line $ AP$ and the circumcircle of triangle $ AB_1C_1$. Prove that $ \frac{AP}{AQ} \equal{} \frac{3}{2}$.

2021 Swedish Mathematical Competition, 1

In a triangle, both the sides and the angles form arithmetic sequences. Determine the angles of the triangle.

1995 Bulgaria National Olympiad, 2

Let triangle ABC has semiperimeter $ p$. E,F are located on AB such that $ CE\equal{}CF\equal{}p$. Prove that the C-excircle of triangle ABC touches the circumcircle (EFC).

2006 AMC 10, 23

Circles with centers $ A$ and $ B$ have radii 3 and 8, respectively. A common internal tangent intersects the circles at $ C$ and $ D$, respectively. Lines $ AB$ and $ CD$ intersect at $ E$, and $ AE \equal{} 5$. What is $ CD$? [asy]unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C)); dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8)); label("$A$",A,W); label("$B$",B,E); label("$C$",C,SE); label("$E$",Ep,SSE); label("$D$",D,NW);[/asy]$ \textbf{(A) } 13\qquad \textbf{(B) } \frac {44}{3}\qquad \textbf{(C) } \sqrt {221}\qquad \textbf{(D) } \sqrt {255}\qquad \textbf{(E) } \frac {55}{3}$

2003 IMO, 3

Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\dfrac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.

2010 National Olympiad First Round, 11

At most how many points with integer coordinates are there over a circle with center of $(\sqrt{20}, \sqrt{10})$ in the $xy$-plane? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None} $

2023 Sharygin Geometry Olympiad, 9

It is known that the reflection of the orthocenter of a triangle $ABC$ about its circumcenter lies on $BC$. Let $A_1$ be the foot of the altitude from $A$. Prove that $A_1$ lies on the circle passing through the midpoints of the altitudes of $ABC$.

2021 New Zealand MO, 4

Tags: geometry
Let $AB$ be a chord of circle $\Gamma$. Let $O$ be the centre of a circle which is tangent to $AB$ at $C$ and internally tangent to $\Gamma$ at $P$. Point $C$ lies between $A$ and $B$. Let the circumcircle of triangle $POC$ intersect $\Gamma$ at distinct points $P$ and $Q$. Prove that $\angle{AQP}=\angle{CQB}$.