Found problems: 25757
2017 Pan-African Shortlist, G1
We consider a square $ABCD$ and a point $E$ on the segment $CD$. The bisector of $\angle EAB$ cuts the segment $BC$ in $F$. Prove that $BF + DE = AE$.
2023 Romanian Master of Mathematics Shortlist, G3
A point $P$ is chosen inside a triangle $ABC$ with circumcircle $\Omega$. Let $\Gamma$ be the circle passing
through the circumcenters of the triangles $APB$, $BPC$, and $CPA$. Let $\Omega$ and $\Gamma$ intersect at
points $X$ and $Y$. Let $Q$ be the reflection of $P$ in the line $XY$ . Prove that $\angle BAP = \angle CAQ$.
Cono Sur Shortlist - geometry, 1993.4
Is it possible to locate in a rectangle of $5$ cm by $ 8$ cm, $51$ circles of diameter $ 1$ cm, so that they don't overlap? Could it be possible for more than $40$ circles ?
2024 Ukraine National Mathematical Olympiad, Problem 6
Inside a quadrilateral $ABCD$ with $AB=BC=CD$, the points $P$ and $Q$ are chosen so that $AP=PB=CQ=QD$. The line through the point $P$ parallel to the diagonal $AC$ intersects the line through the point $Q$ parallel to the diagonal $BD$ at the point $T$. Prove that $BT=CT$.
[i]Proposed by Mykhailo Shtandenko[/i]
2018 Taiwan APMO Preliminary, 1
Let trapezoid $ABCD$ inscribed in a circle $O$, $AB||CD$. Tangent at $D$ wrt $O$ intersects line $AC$ at $F$, $DF||BC$. If $CA=5, BC=4$, then find $AF$.
2020 Malaysia IMONST 2, 4
Given are four circles $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$. Circles $\Gamma_1$ and $\Gamma_2$ are externally tangent at point $A$. Circles $\Gamma_2$ and
$\Gamma_3$ are externally tangent at point $B$. Circles $\Gamma_3$ and $\Gamma_4$ are externally tangent at point $C$. Circles $\Gamma_4$ and
$\Gamma_1$ are externally tangent at point $D$. Prove that $ABCD$ is cyclic.
2016 Sharygin Geometry Olympiad, 4
Is it possible to dissect a regular decagon along some of its diagonals so that the resulting parts can form two regular polygons?
by N.Beluhov
2006 Oral Moscow Geometry Olympiad, 1
An arbitrary triangle $ABC$ is given. Construct a line that divides it into two polygons, which have equal radii of the circumscribed circles.
(L. Blinkov)
Novosibirsk Oral Geo Oly VII, 2021.5
In an acute-angled triangle $ABC$ on the side $AC$, point $P$ is chosen in such a way that $2AP = BC$. Points $X$ and $Y$ are symmetric to $P$ with respect to vertices $A$ and $C$, respectively. It turned out that $BX = BY$. Find $\angle BCA$.
1996 Putnam, 1
Find the least number $A$ such that for any two squares of combined area $1$, a rectangle of area $A$ exists such that the two squares can be packed in the rectangle (without the interiors of the squares overlapping) . You may assume the sides of the squares will be parallel to the sides of the rectangle.
MathLinks Contest 3rd, 1
For a triangle $ABC$ and a point $M$ inside the triangle we consider the lines $AM, BM,CM$ which intersect the sides $BC, CA, AB$ in $A_1, B_1, C_1$ respectively. Take $A', B', C'$ to be the intersection points between the lines $AA_1, BB_1, CC_1$ and $B_1C_1, C_1A_1, A_1B_1$ respectively.
a) Prove that the lines $BC', CB'$ and $AA'$ intersect in a point $A_2$;
b) Define similarly points $B_2, C_2$. Find the loci of $M$ such that the triangle $A_1B_1C_1$ is similar with the triangle $A_2B_2C_2$.
1936 Moscow Mathematical Olympiad, 029
The lengths of a rectangle’s sides and of its diagonal are integers. Prove that the area of the rectangle is an integer multiple of $12$.
2004 Moldova Team Selection Test, 2
In the tetrahedron $ABCD$ the radius of its inscribed sphere is $r$ and the radiuses of the exinscribed spheres (each tangent with a face of the tetrahedron and with the planes of the other faces) are $r_A, r_B, r_C, r_D.$ Prove the inequality $$\frac{1}{\sqrt{r_A^2-r_Ar_B+r_B^2}}+\frac{1}{\sqrt{r_B^2-r_Br_C+r_C^2}}+\frac{1}{\sqrt{r_C^2-r_Cr_D+r_D^2}}+\frac{1}{\sqrt{r_D^2-r_Dr_A+r_A^2}}\leq\frac{2}{r}.$$
2008 Postal Coaching, 1
In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.
2016 Iranian Geometry Olympiad, 2
Let two circles $C_1$ and $C_2$ intersect in points $A$ and $B$. The tangent to $C_1$ at $A$ intersects $C_2$ in $P$ and the line $PB$ intersects $C_1$ for the second time in $Q$ (suppose that $Q$ is outside $C_2$). The tangent to $C_2$ from $Q$ intersects $C_1$ and $C_2$ in $C$ and $D$, respectively. (The points $A$ and $D$ lie on different sides of the line $PQ$.) Show that $AD$ is the bisector of $\angle CAP$.
[i]Proposed by Iman Maghsoudi[/i]
2014 Switzerland - Final Round, 10
Let $k$ be a circle with diameter $AB$. Let $C$ be a point on the straight line $AB$, so that $B$ between $A$ and $C$ lies. Let $T$ be a point on $k$ such that $CT$ is a tangent to $k$. Let $l$ be the parallel to $CT$ through $A$ and $D$ the intersection of $l$ and the perpendicular to $AB$ through $T$. Show that the line $DB$ bisects segment $CT$.
2012 Online Math Open Problems, 47
Let $ABCD$ be an isosceles trapezoid with bases $AB=5$ and $CD=7$ and legs $BC=AD=2 \sqrt{10}.$ A circle $\omega$ with center $O$ passes through $A,B,C,$ and $D.$ Let $M$ be the midpoint of segment $CD,$ and ray $AM$ meet $\omega$ again at $E.$ Let $N$ be the midpoint of $BE$ and $P$ be the intersection of $BE$ with $CD.$ Let $Q$ be the intersection of ray $ON$ with ray $DC.$ There is a point $R$ on the circumcircle of $PNQ$ such that $\angle PRC = 45^\circ.$ The length of $DR$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
[i]Author: Ray Li[/i]
2002 Tuymaada Olympiad, 4
A rectangular table with 2001 rows and 2002 columns is partitioned into $1\times 2$ rectangles. It is known that any other partition of the table into $1\times 2$ rectangles contains a rectangle belonging to the original partition.
Prove that the original partition contains two successive columns covered by 2001 horizontal rectangles.
[i]Proposed by S. Volchenkov[/i]
1966 Czech and Slovak Olympiad III A, 2
Into how many regions do $n$ circles divide the plane, if each pair of circles intersects in two points and no point lies on three circles?
2019 IOM, 3
In a non-equilateral triangle $ABC$ point $I$ is the incenter and point $O$ is the circumcenter. A line $s$ through $I$ is perpendicular to $IO$. Line $\ell$ symmetric to like $BC$ with respect to $s$ meets the segments $AB$ and $AC$ at points $K$ and $L$, respectively ($K$ and $L$ are different from $A$). Prove that the circumcenter of triangle $AKL$ lies on the line $IO$.
[i]Dušan Djukić[/i]
2007 Harvard-MIT Mathematics Tournament, 8
$ABCD$ is a convex quadrilateral such that $AB<AD$. The diagonal $\overline{AC}$ bisects $\angle BAD$, and $m\angle ABD=130^\circ$. Let $E$ be a point on the interior of $\overline{AD}$, and $m\angle BAD=40^\circ$. Given that $BC=CD=DE$, determine $m\angle ACE$ in degrees.
2022 Bosnia and Herzegovina BMO TST, 3
Cyclic quadrilateral $ABCD$ is inscribed in circle $k$ with center $O$. The angle bisector of $ABD$ intersects $AD$ and $k$ in $K,M$ respectively, and the angle bisector of $CBD$ intersects $CD$ and $k$ in $L,N$ respectively. If $KL\parallel MN$ prove that the circumcircle of triangle $MON$ bisects segment $BD$.
1973 IMO Longlists, 4
A circle of radius 1 is placed in a corner of a room (i.e., it touches the horizontal floor and two vertical walls perpendicular to each other). Find the locus of the center of the band for all of its possible positions.
[b]Note.[/b] For the solution of this problem, it is useful to know the following Monge theorem: The locus of all points $P$, such that the two tangents from $P$ to the ellipse with equation $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ are perpendicular to each other, is a circle − a so-called Monge circle − with equation $x^2 + y^2 = a^2 + b^2$.
1972 IMO Shortlist, 5
Prove the following assertion: The four altitudes of a tetrahedron $ABCD$ intersect in a point if and only if
\[AB^2 + CD^2 = BC^2 + AD^2 = CA^2 + BD^2.\]
2024 Regional Olympiad of Mexico Southeast, 2
Let \(ABC\) be an acute triangle with circumradius \(R\). Let \(D\) be the midpoint of \(BC\) and \(F\) the midpoint of \(AB\). The perpendicular to \(AC\) through \(F\) and the perpendicular to \(BC\) through \(B\) intersect at \(N\). Prove that \(ND = R\).