Found problems: 25757
2001 Tuymaada Olympiad, 3
$ABCD$ is a convex quadrilateral; half-lines $DA$ and $CB$ meet at point $Q$; half-lines $BA$ and $CD$ meet at point $P$. It is known that $\angle AQB=\angle APD$. The bisector of angle $\angle AQB$ meets the sides $AB$ and $CD$ of the quadrilateral at points $X$ and $Y$, respectively; the bisector of angle $\angle APD$ meets the sides $AD$ and $BC$ at points $Z$ and $T$, respectively.
The circumcircles of triangles $ZQT$ and $XPY$ meet at point $K$ inside the quadrilateral.
Prove that $K$ lies on the diagonal $AC$.
[i]Proposed by S. Berlov[/i]
2024 Thailand October Camp, 4
Let $ABC$ be an acute triangle with altitudes $AD,BE$ and $CF$. Denote $\omega_1,\omega_2$ the circumcircles of $\triangle AEB, \triangle AFC$, respectively. Suppose the line through $A$ parallel to $EF$ intersects $\omega_1$ and $\omega_2$ at $P$ and $Q$, respectively. Show that the circumcenter of $\triangle PQD$ lies on $AD$
1961 AMC 12/AHSME, 14
A rhombus is given with one diagonal twice the length of the other diagonal. Express the side of the rhombus is terms of $K$, where $K$ is the area of the rhombus in square inches.
${{ \textbf{(A)}\ \sqrt{K} \qquad\textbf{(B)}\ \frac{1}{2}\sqrt{2K} \qquad\textbf{(C)}\ \frac{1}{3}\sqrt{3K} \qquad\textbf{(D)}\ \frac{1}{4}\sqrt{4K} }\qquad\textbf{(E)}\ \text{None of these are correct} } $
2018 Balkan MO Shortlist, G5
Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide.
by Evangelos Psychas, Greece
2010 Today's Calculation Of Integral, 535
Let $ C$ be the parameterized curve for a given positive number $ r$ and $ 0\leq t\leq \pi$,
$ C: \left\{\begin{array}{ll} x \equal{} 2r(t \minus{} \sin t\cos t) & \quad \\
y \equal{} 2r\sin ^ 2 t & \quad \end{array} \right.$
When the point $ P$ moves on the curve $ C$,
(1) Find the magnitude of acceleralation of the point $ P$ at time $ t$.
(2) Find the length of the locus by which the point $ P$ sweeps for $ 0\leq t\leq \pi$.
(3) Find the volume of the solid by rotation of the region bounded by the curve $ C$ and the $ x$-axis about the $ x$-axis.
Edited.
1966 IMO Longlists, 47
Consider all segments dividing the area of a triangle $ABC$ in two equal parts. Find the length of the shortest segment among them, if the side lengths $a,$ $b,$ $c$ of triangle $ABC$ are given. How many of these shortest segments exist ?
2015 Baltic Way, 14
In the non-isosceles triangle $ABC$ an altitude from $A$ meets side $BC$ in $D$ . Let $M$ be the midpoint of $BC$ and let $N$ be the reflection of $M$ in $D$ . The circumcirle of triangle $AMN$ intersects the side $AB$ in $P\ne A$ and the side $AC$ in $Q\ne A$ . Prove that $AN,BQ$ and $CP$ are concurrent.
JOM 2025, 3
Let $\triangle MAB$ be a triangle with circumcenter $O$. $P$ and $Q$ lie on line $AB$ (both interior or exterior) such that $\angle PMA = \angle BMQ$. Let $D$ be a point on the perpendicular line through $M$ to $AB$. $E$ is the second intersection of the two circles $(DAB)$ and $(DPQ)$. The line $MO$ intersects $AB$ at $J$. Show that the circumcenter of $\triangle EMJ$ lies on line $AB$.
[i](Proposed by Tan Rui Xuen)[/i]
1985 Traian Lălescu, 2.2
We are given the line $ d, $ and a point $ A $ which is not on $ d. $ Two points $ B $ and $ C $ move on $ d $ such that the angle $ \angle BAC $ is constant. Prove that the circumcircle of $ ABC $ is tangent to a fixed circle.
2018 Caucasus Mathematical Olympiad, 2
Let $I$ be the incenter of an acute-angled triangle $ABC$. Let $P$, $Q$, $R$ be points on sides $AB$, $BC$, $CA$ respectively, such that $AP=AR$, $BP=BQ$ and $\angle PIQ = \angle BAC$. Prove that $QR \perp AC$.
1984 Vietnam National Olympiad, 3
Consider a trihedral angle $Sxyz$ with $\angle xSz = \alpha, \angle xSy = \beta$ and $\angle ySz =\gamma$. Let $A,B,C$ denote the dihedral angles at edges $y, z, x$ respectively.
$(a)$ Prove that $\frac{\sin\alpha}{\sin A}=\frac{\sin\beta}{\sin B}=\frac{\sin\gamma}{\sin C}$
$(b)$ Show that $\alpha + \beta = 180^{\circ}$ if and only if $\angle A + \angle B = 180^{\circ}.$
$(c)$ Assume that $\alpha=\beta =\gamma = 90^{\circ}$. Let $O \in Sz$ be a fixed point such that $SO = a$ and let $M,N$ be variable points on $x, y$ respectively. Prove that $\angle SOM +\angle SON +\angle MON$ is constant and find the locus of the incenter of $OSMN$.
1967 IMO Shortlist, 6
In making Euclidean constructions in geometry it is permitted to use a ruler and a pair of compasses. In the constructions considered in this question no compasses are permitted, but the ruler is assumed to have two parallel edges, which can be used for constructing two parallel lines through two given points whose distance is at least equal to the breadth of the rule. Then the distance between the parallel lines is equal to the breadth of the ruler. Carry through the following constructions with such a ruler. Construct:
[b]a)[/b] The bisector of a given angle.
[b]b)[/b] The midpoint of a given rectilinear line segment.
[b]c)[/b] The center of a circle through three given non-collinear
points.
[b]d)[/b] A line through a given point parallel to a given line.
2013 Moldova Team Selection Test, 3
Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.
2000 Kurschak Competition, 2
Let $ABC$ be a non-equilateral triangle in the plane, and let $T$ be a point different from its vertices. Define $A_T$, $B_T$ and $C_T$ as the points where lines $AT$, $BT$, and $CT$ meet the circumcircle of $ABC$. Prove that there are exactly two points $P$ and $Q$ in the plane for which the triangles $A_PB_PC_P$ and $A_QB_QC_Q$ are equilateral. Prove furthermore that line $PQ$ contains the circumcenter of $\triangle ABC$.
1995 Tournament Of Towns, (449) 5
Four equal right-angled triangles are given. We are allowed to cut any triangle into two new ones along the altitude dropped on to the hypotenuse. This operation may be repeated with any of the triangles from the new set. Prove that after any number of such operations there will be congruent triangles among those obtained.
(AV Shapovalov)
1984 IMO, 3
Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.
2024 Malaysian IMO Team Selection Test, 6
Let $\omega_1$, $\omega_2$, $\omega_3$ are three externally tangent circles, with $\omega_1$ and $\omega_2$ tangent at $A$. Choose points $B$ and $C$ on $\omega_1$ so that lines $AB$ and $AC$ are tangent to $\omega_3$. Suppose the line $BC$ intersect $\omega_3$ at two distinct points, and $X$ is the intersection further away to $B$ and $C$ than the other one.
Prove that one of the tangent lines of $\omega_2$ passing through $X$, is also tangent to an excircle of triangle $ABC$.
[i]Proposed by Ivan Chan Kai Chin[/i]
2003 IMO Shortlist, 1
Let $a_{ij}$ $i=1,2,3$; $j=1,2,3$ be real numbers such that $a_{ij}$ is positive for $i=j$ and negative for $i\neq j$.
Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers \[a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}\] are either all negative, all positive, or all zero.
[i]Proposed by Kiran Kedlaya, USA[/i]
2016 Sharygin Geometry Olympiad, P8
Let $ABCDE$ be an inscribed pentagon such that $\angle B +\angle E = \angle C +\angle D$.Prove that $\angle CAD < \pi/3 < \angle A$.
[i](Proposed by B.Frenkin)[/i]
2012 CHMMC Fall, 2
Consider a triangle $ABC$ with points $D$ on $AB$, $E$ on $BC$, and let $F$ be the intersection of $AE$ and $CD$. Suppose $AD = 1$, $DB = 2$,$BE = 1$,$EC = 3$, and $CA = 5$. Find the value of the area of $ECF$ minus the area of $ADF$.
1979 AMC 12/AHSME, 28
Circles with centers $A ,~ B,$ and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals
$\textbf{(A) }3r-2\qquad\textbf{(B) }r^2\qquad\textbf{(C) }r+\sqrt{3(r-1)}\qquad$
$\textbf{(D) }1+\sqrt{3(r^2-1)}\qquad\textbf{(E) }\text{none of these}$
[asy]
//Holy crap, CSE5 is freaking amazing!
import cse5;
pathpen=black;
pointpen=black;
dotfactor=3;
size(200);
pair A=(1,2),B=(2,0),C=(0,0);
D(CR(A,1.5));
D(CR(B,1.5));
D(CR(C,1.5));
D(MP("$A$",A));
D(MP("$B$",B));
D(MP("$C$",C));
pair[] BB,CC;
CC=IPs(CR(A,1.5),CR(B,1.5));
BB=IPs(CR(A,1.5),CR(C,1.5));
D(BB[0]--CC[1]);
MP("$B'$",BB[0],NW);MP("$C'$",CC[1],NE);
//Credit to TheMaskedMagician for the diagram
[/asy]
2019 Sharygin Geometry Olympiad, 1
A triangle $OAB$ with $\angle A=90^{\circ}$ lies inside another triangle with vertex $O$. The altitude of $OAB$ from $A$ until it meets the side of angle $O$ at $M$. The distances from $M$ and $B$ to the second side of angle $O$ are $2$ and $1$ respectively. Find the length of $OA$.
1962 AMC 12/AHSME, 18
A regular dodecagon ($ 12$ sides) is inscribed in a circle with radius $ r$ inches. The area of the dodecagon, in square inches, is:
$ \textbf{(A)}\ 3r^2 \qquad
\textbf{(B)}\ 2r^2 \qquad
\textbf{(C)}\ \frac{3r^2 \sqrt{3}}{4} \qquad
\textbf{(D)}\ r^2 \sqrt{3} \qquad
\textbf{(E)}\ 3r^2 \sqrt{3}$
2021 Taiwan TST Round 3, G
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
2001 South africa National Olympiad, 5
Starting from a given cyclic quadrilateral $\mathcal{Q}_0$, a sequence of quadrilaterals is constructed so that $\mathcal{Q}_{k + 1}$ is the circumscribed quadrilateral of $\mathcal{Q}_k$ for $k = 0,1,\dots$. The sequence terminates when a quadrilateral is reached that is not cyclic. (The circumscribed quadrilateral of a cylic quadrilateral $ABCD$ has sides that are tangent to the circumcircle of $ABCD$ at $A$, $B$, $C$ and $D$.) Prove that the sequence always terminates, except when $\mathcal{Q}_0$ is a square.