Found problems: 25757
2011 AMC 12/AHSME, 25
Triangle $ABC$ has $\angle BAC=60^\circ$, $\angle CBA \le 90^\circ$, $BC=1$, and $AC \ge AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?
$\textbf{(A)}\ 60 ^\circ \qquad
\textbf{(B)}\ 72 ^\circ\qquad
\textbf{(C)}\ 75 ^\circ \qquad
\textbf{(D)}\ 80 ^\circ\qquad
\textbf{(E)}\ 90 ^\circ$
2007 Romania Team Selection Test, 4
The points $M, N, P$ are chosen on the sides $BC, CA, AB$ of a triangle $\Delta ABC$, such that the triangle $\Delta MNP$ is acute-angled. We denote with $x$ the length of the shortest altitude of the triangle $\Delta ABC$, and with $X$ the length of the longest altitudes of the triangle $\Delta MNP$. Prove that $x \leq 2X$.
2016 SGMO, Q2
Let $A_1A_2A_3A_4A_5A_6$ be a convex hexagon. Suppose that there exists 2 points $P,Q$ in its interior such that $\angle A_{i-1}A_iP=\angle QA_iA_{i+1}$ for $i=1,2,\ldots,6$ where $A_0\equiv A_6,A_1\equiv A_7$. Prove that
\[\angle A_1PA_2+\angle A_3PA_4+\angle A_5PA_6=180^\circ.\]
2005 Rioplatense Mathematical Olympiad, Level 3, 2
In trapezoid $ABCD$, the sum of the lengths of the bases $AB$ and $CD$ is equal to the length of the diagonal $BD$. Let $M$ denote the midpoint of $BC$, and let $E$ denote the reflection of $C$ about the line $DM$. Prove that $\angle AEB=\angle ACD$.
2017 Ecuador NMO (OMEC), 6
Let $ABCDEF$ be a convex hexagon with sides not parallel and tangent to a circle $\Gamma$ at the midpoints $P$, $Q$, $R$ of the sides AB, $CD$, $EF$ respectively. $\Gamma$ is tangent to $BC$, $DE$ and $FA$ at the points $X, Y, Z$ respectively. Line $AB$ intersects lines $EF$ and $CD$ at points $M$ and $N$ respectively. Lines $MZ$ and $NX$ intersect at point $K$. Let $ r$ be the line joining the center of $\Gamma$ and point $K$. Prove that the intersection of $PY$ and $QZ$ lies on the line $ r$.
2024 Canadian Junior Mathematical Olympiad, 3
Let $ABC$ be a triangle with incenter $I$. Suppose the reflection of $AB$ across $CI$ and the reflection of $AC$ across $BI$ intersect at a point $X$. Prove that $XI$ is perpendicular to $BC$.
1951 Moscow Mathematical Olympiad, 203
A sphere is inscribed in an $n$-angled pyramid. Prove that if we align all side faces of the pyramid with the base plane, flipping them around the corresponding edges of the base, then
(1) all tangent points of these faces to the sphere would coincide with one point, $H$, and
(2) the vertices of the faces would lie on a circle centered at $H$.
2015 Princeton University Math Competition, A3/B5
Cyclic quadrilateral $ABCD$ satisfies $\angle ADC = 2 \cdot \angle BAD = 80^\circ$ and $\overline{BC} = \overline{CD}$. Let the angle bisector of $\angle BCD$ meet $AD$ at $P$. What is the measure, in degrees, of $\angle BP D$?
2011 USA Team Selection Test, 7
Let $ABC$ be an acute scalene triangle inscribed in circle $\Omega$. Circle $\omega$, centered at $O$, passes through $B$ and $C$ and intersects sides $AB$ and $AC$ at $E$ and $D$, respectively. Point $P$ lies on major arc $BAC$ of $\Omega$. Prove that lines $BD, CE, OP$ are concurrent if and only if triangles $PBD$ and $PCE$ have the same incenter.
2006 Sharygin Geometry Olympiad, 22
Given points $A, B$ on a circle and a point $P$ not lying on the circle. $X$ is an arbitrary point of the circle, $Y$ is the intersection point of lines $AX$ and $BP$. Find the locus of the centers of the circles circumscribed around the triangles $PXY$.
1971 IMO, 2
Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.
2016 Mathematical Talent Reward Programme, MCQ: P 5
$ABCD$ is a quadrilateral on complex plane whose four vertices satisfy $z^4+z^3+z^2+z+1=0$. Then $ABCD$ is a
[list=1]
[*] Rectangle
[*] Rhombus
[*] Isosceles Trapezium
[*] Square
[/list]
1994 National High School Mathematics League, 6
In rectangular coordinate system, the equation $\frac{|x+y|}{2a}+\frac{|x-y|}{2b}=1$ ($a,b$ are different positive numbers) refers to
$\text{(A)}$ a triangle
$\text{(B)}$ a square
$\text{(C)}$ rectangle, not square
$\text{(D)}$ rhombus, not square
1951 AMC 12/AHSME, 10
Of the following statements, the one that is incorrect is:
$ \textbf{(A)}\ \text{Doubling the base of a given rectangle doubles the area.}$
$ \textbf{(B)}\ \text{Doubling the altitude of a triangle doubles the area.}$
$ \textbf{(C)}\ \text{Doubling the radius of a given circle doubles the area.}$
$ \textbf{(D)}\ \text{Doubling the divisor of a fraction and dividing its numerator by 2 changes the quotient.}$
$ \textbf{(E)}\ \text{Doubling a given quantity may make it less than it originally was.}$
2013 Swedish Mathematical Competition, 4
A robotic lawnmower is located in the middle of a large lawn. Due a manufacturing defect, the robot can only move straight ahead and turn in directions that are multiples of $60^o$. A fence must be set up so that it delimits the entire part of the lawn that the robot can get to, by traveling along a curve with length no more than $10$ meters from its starting position, given that it is facing north when it starts. How long must the fence be?
2010 Kazakhstan National Olympiad, 5
Arbitrary triangle $ABC$ is given (with $AB<BC$). Let $M$ - midpoint of $AC$, $N$- midpoint of arc $AC$ of circumcircle $ABC$, which is contains point $B$. Let $I$ - in-center of $ABC$. Proved, that $ \angle IMA = \angle INB$
1985 AMC 8, 19
If the length and width of a rectangle are each increased by $ 10 \%$, then the perimeter of the rectangle is increased by
\[ \textbf{(A)}\ 1 \% \qquad
\textbf{(B)}\ 10 \% \qquad
\textbf{(C)}\ 20 \% \qquad
\textbf{(D)}\ 21 \% \qquad
\textbf{(E)}\ 40 \%
\]
2013 Today's Calculation Of Integral, 868
In the coordinate space, define a square $S$, defined by the inequality $|x|\leq 1,\ |y|\leq 1$ on the $xy$-plane, with four vertices $A(-1,\ 1,\ 0),\ B(1,\ 1,\ 0),\ C(1,-1,\ 0), D(-1,-1,\ 0)$. Let $V_1$ be the solid by a rotation of the square $S$ about the line $BD$ as the axis of rotation, and let $V_2$ be the solid by a rotation of the square $S$ about the line $AC$ as the axis of rotation.
(1) For a real number $t$ such that $0\leq t<1$, find the area of cross section of $V_1$ cut by the plane $x=t$.
(2) Find the volume of the common part of $V_1$ and $V_2$.
2011 IMO Shortlist, 3
Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely.
Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times.
[i]Proposed by Geoffrey Smith, United Kingdom[/i]
2011 China Team Selection Test, 1
Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.
2023 LMT Fall, 14
In obtuse triangle $ABC$ with $AB = 7$, $BC = 20$, and $C A = 15$, let point $D$ be the foot of the altitude from $C$ to line $AB$. Evaluate $[ACD]+[BCD]$. (Note that $[XY Z]$ means the area of triangle $XY Z$.)
[i]Proposed by Jonathan Liu[/i]
1986 IMO Shortlist, 18
Let $AX,BY,CZ$ be three cevians concurrent at an interior point $D$ of a triangle $ABC$. Prove that if two of the quadrangles $DY AZ,DZBX,DXCY$ are circumscribable, so is the third.
2025 Canada Junior National Olympiad, 2
Let $ABCD$ be a trapezoid with parallel sides $AB$ and $CD$, where $BC\neq DA$. A circle passing through $C$ and $D$ intersects $AC, AD, BC, BD$ again at $W, X, Y, Z$ respectively. Prove that $WZ, XY, AB$ are concurrent.
1980 IMO, 1
Let $\alpha, \beta$ and $\gamma$ denote the angles of the triangle $ABC$. The perpendicular bisector of $AB$ intersects $BC$ at the point $X$, the perpendicular bisector of $AC$ intersects it at $Y$. Prove that $\tan(\beta) \cdot \tan(\gamma) = 3$ implies $BC= XY$ (or in other words: Prove that a sufficient condition for $BC = XY$ is $\tan(\beta) \cdot \tan(\gamma) = 3$). Show that this condition is not necessary, and give a necessary and sufficient condition for $BC = XY$.
2010 Tournament Of Towns, 2
Pete has an instrument which can locate the midpoint of a line segment, and also the point which divides the line segment into two segments whose lengths are in a ratio of $n : (n + 1)$, where $n$ is any positive integer. Pete claims that with this instrument, he can locate the point which divides a line segment into two segments whose lengths are at any given rational ratio. Is Pete right?