Found problems: 25757
2014 Contests, 3
$AB$ is a chord of $O$ and $AB$ is not a diameter of $O$. The tangent lines to $O$ at $A$ and $B$ meet at $C$. Let $M$ and $N$ be the midpoint of the segments $AC$ and $BC$, respectively. A circle passing through $C$ and tangent to $O$ meets line $MN$ at $P$ and $Q$. Prove that $\angle PCQ = \angle CAB$.
2024 Kyiv City MO Round 2, Problem 3
Let $\omega$ denote the circumscribed circle of an acute-angled $\triangle ABC$ with $AB \neq BC$. Let $A'$ be the point symmetric to the point $A$ with respect to the line $BC$. The lines $AA'$ and $A'C$ intersect $\omega$ for the second time at points $D$ and $E$, respectively. Let the lines $AE$ and $BD$ intersect at point $P$. Prove that the line $A'P$ is tangent to the circumscribed circle of $\triangle A'BC$.
[i]Proposed by Oleksii Masalitin[/i]
2009 Grand Duchy of Lithuania, 4
A triangle $ ABC$ has an obtuse angle at $ B$. The perpindicular at $ B$ to $ AB$ meets $ AC$ at $ D$, and $ |CD| \equal{} |AB|$.
Prove that $ |AD|^2 \equal{} |AB|.|BC|$ if and only if $ \angle CBD \equal{} 30^\circ$.
2022 Germany Team Selection Test, 2
Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.
1999 Argentina National Olympiad, 4
Coins of diameter $1$ have been placed on a square of side $11$, without overlapping or protruding from the square. Can there be $126$ coins? and $127$? and $128$?
2023 Paraguay Mathematical Olympiad, 2
Aidée draws ten squares of different sizes. The diagonal of the first square measures $1$ cm, the diagonal of the second measures $2$ cm, the diagonal of the third measures $3$ cm, and so on until the diagonal of the tenth square measures $10$ cm. How much are the areas of the ten squares?
2000 Harvard-MIT Mathematics Tournament, 12
At a dance, Abhinav starts from point $(a, 0)$ and moves along the negative $x$ direction with speed $v_a$, while Pei-Hsin starts from $(0,6)$ and glides in the negative $y$-direction with speed $v_b$. What is the distance of closest approach between the two?
2003 Federal Math Competition of S&M, Problem 3
Let $a,b$ and $c$ be the lengths of the edges of a triangle whose angles are $\alpha=40^\circ,\beta=60^\circ$ and $\gamma=80^\circ$. Prove that
$$a(a+b+c)=b(b+c).$$
Durer Math Competition CD 1st Round - geometry, 2008.C3
Given the squares $ABCD$ and $DEFG$, whose only common point is $D$. Let the midpoints of segments $AG$, $GE$, $EC$, and $CA$ be $H, I, J$, and $K$ respectively . Prove that $HIJK$ is a square.
[img]https://cdn.artofproblemsolving.com/attachments/f/d/c3313e5bbf581977a74ea2b114d14950e38605.png[/img]
2010 Today's Calculation Of Integral, 560
Let $ K$ be the figure bounded by the graph of function $ y \equal{} \frac {x}{\sqrt {1 \minus{} x^2}}$, $ x$ axis and the line $ x \equal{} \frac {1}{2}$.
(1) Find the volume $ V_1$ of the solid generated by rotation of $ K$ around $ x$ axis.
(2) Find the volume $ V_2$ of the solid generated by rotation of $ K$ around $ y$ axis.
Please solve question (2) without using the shell method for Japanese High School Students those who don't learn it.
1993 Turkey MO (2nd round), 2
I centered incircle of triangle $ABC$ $(m(\hat{B})=90^\circ)$ touches $\left[AB\right], \left[BC\right], \left[AC\right]$ respectively at $F, D, E$. $\left[CI\right]\cap\left[EF\right]={L}$ and $\left[DL\right]\cap\left[AB\right]=N$. Prove that $\left[AI\right]=\left[ND\right]$.
2006 Romania National Olympiad, 1
Let $ABC$ be a triangle and the points $M$ and $N$ on the sides $AB$ respectively $BC$, such that $2 \cdot \frac{CN}{BC} = \frac{AM}{AB}$. Let $P$ be a point on the line $AC$. Prove that the lines $MN$ and $NP$ are perpendicular if and only if $PN$ is the interior angle bisector of $\angle MPC$.
1990 AMC 12/AHSME, 3
The consecutive angles of a trapezoid form an arithmetic sequence. If the smallest angle is $75^\circ$, then the largest angle is
$\textbf{(A) }95^\circ\qquad
\textbf{(B) }100^\circ\qquad
\textbf{(C) }105^\circ\qquad
\textbf{(D) }110^\circ\qquad
\textbf{(E) }115^\circ$
2011 AMC 10, 9
A rectangular region is bounded by the graphs of the equations $y=a, y=-b, x=-c,$ and $x=d$, where $a,b,c,$ and $d$ are all positive numbers. Which of the following represents the area of this region?
$ \textbf{(A)}\ ac+ad+bc+bd\qquad\textbf{(B)}\ ac-ad+bc-bd\qquad\textbf{(C)}\ ac+ad-bc-bd \quad\quad\qquad\textbf{(D)}\ -ac-ad+bc+bd\qquad\textbf{(E)}\ ac-ad-bc+bd $
2013 AMC 10, 7
A student must choose a program of four courses from a menu of courses consisting of English, Algebra, Geometry, History, Art, and Latin. This program must contain English and at least one mathematics course. In how many ways can this program be chosen?
$ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 16$
Mid-Michigan MO, Grades 7-9, 2009
[b]p1.[/b] Arrange the whole numbers $1$ through $15$ in a row so that the sum of any two adjacent numbers is a perfect square. In how many ways this can be done?
[b]p2.[/b] Prove that if $p$ and $q$ are prime numbers which are greater than $3$ then $p^2 - q^2$ is divisible by $24$.
[b]p3.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies.
Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!”
The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!”
A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!”
Then a stripped polyleg started ”None of you has $8$ legs. Only I have $8$ legs!”
Which polyleg has exactly $8$ legs?
[b][b]p4.[/b][/b] There is a small puncture (a point) in the wall (as shown in the figure below to the right). The housekeeper has a small flag of the following form (see the figure left). Show on the figure all the points of the wall where you can hammer in a nail such that if you hang the flag it will close up the puncture.
[img]https://cdn.artofproblemsolving.com/attachments/a/f/8bb55a3fdfb0aff8e62bc4cf20a2d3436f5d90.png[/img]
[b]p5.[/b] Assume $ a, b, c$ are odd integers. Show that the quadratic equation $ax^2 + bx + c = 0$ has no rational solutions.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 iTest Tournament of Champions, 5
Let $c$ be the number of ways to choose three vertices of an $6$-dimensional cube that form an equilateral triangle. Find the remainder when $c$ is divided by $2007$.
1990 IMO Shortlist, 19
Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$
1999 Tournament Of Towns, 5
The sides $AB$ and $AC$ are tangent at points $P$ and $Q$, respectively, to the incircle of a triangle $ABC. R$ and $S$ are the midpoints of the sides $AC$ and $BC$, respectively, and $T$ is the intersection point of the lines $PQ$ and $RS$. Prove that $T$ lies on the bisector of the angle $B$ of the triangle.
(M Evdokimov)
2015 NIMO Summer Contest, 5
Let $\triangle ABC$ have $AB=3$, $AC=5$, and $\angle A=90^\circ$. Point $D$ is the foot of the altitude from $A$ to $\overline{BC}$, and $X$ and $Y$ are the feet of the altitudes from $D$ to $\overline{AB}$ and $\overline{AC}$ respectively. If $XY^2$ can be written in the form $\tfrac mn$ where $m$ and $n$ are positive relatively prime integers, what is $100m+n$?
[i] Proposed by David Altizio [/i]
1999 China Second Round Olympiad, 1
In convex quadrilateral $ABCD, \angle BAC=\angle CAD.$ $E$ lies on segment $CD$, and $BE$ and $AC$ intersect at $F,$ $DF$ and $BC$ intersect at $G.$ Prove that $\angle GAC=\angle EAC.$
2018 Thailand TST, 1
Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.
1973 Spain Mathematical Olympiad, 7
The two points $P(8, 2)$ and $Q(5, 11)$ are considered in the plane. A mobile moves from $P$ to $Q$ according to a path that has to fulfill the following conditions: The moving part of $ P$ and arrives at a point on the $x$-axis, along which it travels a segment of length $1$, then it departs from this axis and goes towards a point on the $y$ axis, on which travels a segment of length $2$, separates from the $y$ axis finally and goes towards the point $Q$. Among all the possible paths, determine the one with the minimum length, thus like this same length.
1968 AMC 12/AHSME, 31
In this diagram, not drawn to scale, figures $\text{I}$ and $\text{III}$ are equilateral triangular regions with respective areas of $32\sqrt{3}$ and $8\sqrt{3}$ square inches. Figure $\text{II}$ is a square region with area $32$ sq. in. Let the length of segment $AD$ be decreased by $12\frac{1}{2} \%$ of itself, while the lengths of $AB$ and $CD$ remain unchanged. The percent decrease in the area of the square is:
[asy]
draw((0,0)--(22.6,0));
draw((0,0)--(5.66,9.8)--(11.3,0)--(11.3,5.66)--(16.96,5.66)--(16.96,0)--(19.45,4.9)--(22.6,0));
label("A", (0,0), S);
label("B", (11.3,0), S);
label("C", (16.96,0), S);
label("D", (22.6,0), S);
label("I", (5.66, 3.9));
label("II", (14.15,2.83));
label("III", (19.7,2));
[/asy]
$\textbf{(A)}\ 12\frac{1}{2} \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 50 \qquad\textbf{(D)}\ 75 \qquad\textbf{(E)}\ 87\frac{1}{2}$
2021 Saudi Arabia Training Tests, 7
Let $AA_0$ be the altitude of the isosceles triangle $ABC~(AB = AC)$. A circle $\gamma$ centered at the midpoint of $AA_0$ touches $AB$ and $AC$. Let $X$ be an arbitrary point of line $BC$. Prove that the tangents from $X$ to $\gamma$ cut congruent segments on lines $AB$ and $AC$