This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 Kazakhstan NMO, Problem 4

Tags: geometry
The acute triangle $ABC$ $(AC> BC)$ is inscribed in a circle with the center at the point $O$, and $CD$ is the diameter of this circle. The point $K$ is on the continuation of the ray $DA$ beyond the point $A$. And the point $L$ is on the segment $BD$ $(DL> LB)$ so that $\angle OKD = \angle BAC$, $\angle OLD = \angle ABC$. Prove that the line $KL$ passes through the midpoint of the segment $AB$.

1970 IMO Longlists, 17

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

VI Soros Olympiad 1999 - 2000 (Russia), 10.10

Take an arbitrary point $D$ on side $BC$ of triangle $ABC$ and draw a circle through point $D$ and the centers of the circles inscribed in triangles $ABD$ and $ACD$. Prove that all circles obtained for different points $D$ of side $BC$ have a common point.

2006 Romania National Olympiad, 1

We consider a prism with 6 faces, 5 of which are circumscriptible quadrilaterals. Prove that all the faces of the prism are circumscriptible quadrilaterals.

2002 All-Russian Olympiad Regional Round, 9.4

Located on the plane $\left[ \frac43 n \right]$ rectangles with sides parallel to the coordinate axes. It is known that any rectangle intersects at least n rectangles. Prove that exists a rectangle that intersects all rectangles.

2007 Today's Calculation Of Integral, 217

Evaluate $ \int_{0}^{1}e^{\sqrt{e^{x}}}\ dx\plus{}2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx$.

1990 AMC 8, 3

What fraction of the square is shaded? [asy] draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3)); fill((0,0)--(0,1)--(1,1)--cycle,grey); fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey); fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey);[/asy] $ \text{(A)}\ \frac{1}{3}\qquad\text{(B)}\ \frac{2}{5}\qquad\text{(C)}\ \frac{5}{12}\qquad\text{(D)}\ \frac{3}{7}\qquad\text{(E)}\ \frac{1}{2} $

2004 Romania Team Selection Test, 16

Three circles $\mathcal{K}_1$, $\mathcal{K}_2$, $\mathcal{K}_3$ of radii $R_1,R_2,R_3$ respectively, pass through the point $O$ and intersect two by two in $A,B,C$. The point $O$ lies inside the triangle $ABC$. Let $A_1,B_1,C_1$ be the intersection points of the lines $AO,BO,CO$ with the sides $BC,CA,AB$ of the triangle $ABC$. Let $ \alpha = \frac {OA_1}{AA_1} $, $ \beta= \frac {OB_1}{BB_1} $ and $ \gamma = \frac {OC_1}{CC_1} $ and let $R$ be the circumradius of the triangle $ABC$. Prove that \[ \alpha R_1 + \beta R_2 + \gamma R_3 \geq R. \]

The Golden Digits 2024, P2

Let $ABCD$ be a parallelogram and $P$ a point in the plane. The line $BP$ intersects the circumcircle of $ABC$ again at $X$ and the line $DP$ intersects the circumcircle of $DAC$ again at $Y$. Let $M$ be the midpoint of the side $AC$. The point $N$ lies on the circumcircle of $PXY$ so that $MN$ is a tangent to this circle. Prove that the segments $MN$ and $AM$ have the same length. [i]Proposed by David Anghel[/i]

2024 Dutch IMO TST, 2

Let $ABC$ be a triangle. A point $P$ lies on the segment $BC$ such that the circle with diameter $BP$ passes through the incenter of $ABC$. Show that $\frac{BP}{PC}=\frac{c}{s-c}$ where $c$ is the length of segment $AB$ and $2s$ is the perimeter of $ABC$.

2016 Mexico National Olmypiad, 1

Tags: geometry
Let $C_1$ and $C_2$ be two circumferences externally tangents at $S$ such that the radius of $C_2$ is the triple of the radius of $C_1$. Let a line be tangent to $C_1$ at $P \neq S$ and to $C_2$ at $Q \neq S$. Let $T$ be a point on $C_2$ such that $QT$ is diameter of $C_2$. Let the angle bisector of $\angle SQT$ meet $ST$ at $R$. Prove that $QR=RT$

1994 Nordic, 3

Tags: geometry
A piece of paper is the square $ABCD$. We fold it by placing the vertex $D$ on the point $D' $ of the side $BC$. We assume that $AD$ moves on the segment $A' D'$ and that $A' D' $ intersects $AB$ at $E$. Prove that the perimeter of the triangle $EBD' $ is one half of the perimeter of the square.

Novosibirsk Oral Geo Oly IX, 2016.6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.

2023 Brazil EGMO TST -wrong source, 1

Tags: geometry
Let $ABC$ be a triangle with $BA=BC$ and $\angle ABC=90^{\circ}$. Let $D$ and $E$ be the midpoints of $CA$ and $BA$ respectively. The point $F$ is inside of $\triangle ABC$ such that $\triangle DEF$ is equilateral. Let $X=BF\cap AC$ and $Y=AF\cap DB$. Prove that $DX=YD$.

2018 AMC 12/AHSME, 25

Tags: geometry , circles
Circles $\omega_1$, $\omega_2$, and $\omega_3$ each have radius $4$ and are placed in the plane so that each circle is externally tangent to the other two. Points $P_1$, $P_2$, and $P_3$ lie on $\omega_1$, $\omega_2$, and $\omega_3$ respectively such that $P_1P_2=P_2P_3=P_3P_1$ and line $P_iP_{i+1}$ is tangent to $\omega_i$ for each $i=1,2,3$, where $P_4 = P_1$. See the figure below. The area of $\triangle P_1P_2P_3$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers $a$ and $b$. What is $a+b$? [asy] unitsize(12); pair A = (0, 8/sqrt(3)), B = rotate(-120)*A, C = rotate(120)*A; real theta = 41.5; pair P1 = rotate(theta)*(2+2*sqrt(7/3), 0), P2 = rotate(-120)*P1, P3 = rotate(120)*P1; filldraw(P1--P2--P3--cycle, gray(0.9)); draw(Circle(A, 4)); draw(Circle(B, 4)); draw(Circle(C, 4)); dot(P1); dot(P2); dot(P3); defaultpen(fontsize(10pt)); label("$P_1$", P1, E*1.5); label("$P_2$", P2, SW*1.5); label("$P_3$", P3, N); label("$\omega_1$", A, W*17); label("$\omega_2$", B, E*17); label("$\omega_3$", C, W*17); [/asy] $\textbf{(A) }546\qquad\textbf{(B) }548\qquad\textbf{(C) }550\qquad\textbf{(D) }552\qquad\textbf{(E) }554$

EMCC Guts Rounds, 2019

[u]Round 1[/u] [b]p1.[/b] What is the smallest number equal to its cube? [b]p2.[/b] Fhomas has $5$ red spaghetti and $5$ blue spaghetti, where spaghetti are indistinguishable except for color. In how many different ways can Fhomas eat $6$ spaghetti, one after the other? (Two ways are considered the same if the sequence of colors are identical) [b]p3.[/b] Jocelyn labels the three corners of a triangle with three consecutive natural numbers. She then labels each edge with the sum of the two numbers on the vertices it touches, and labels the center with the sum of all three edges. If the total sum of all labels on her triangle is $120$, what is the value of the smallest label? [u]Round 2[/u] [b]p4.[/b] Adam cooks a pie in the shape of a regular hexagon with side length $12$, and wants to cut it into right triangular pieces with angles $30^o$, $60^o$, and $90^o$, each with shortest side $3$. What is the maximum number of such pieces he can make? [b]p5.[/b] If $f(x) =\frac{1}{2-x}$ and $g(x) = 1-\frac{1}{x}$ , what is the value of $f(g(f(g(... f(g(f(2019))) ...))))$, where there are $2019$ functions total, counting both $f$ and $g$? [b]p6.[/b] Fhomas is buying spaghetti again, which is only sold in two types of boxes: a $200$ gram box and a $500$ gram box, each with a fixed price. If Fhomas wants to buy exactly $800$ grams, he must spend $\$8:80$, but if he wants to buy exactly 900 grams, he only needs to spend $\$7:90$! In dollars, how much more does the $500$ gram box cost than the $200$ gram box? [u]Round 3[/u] [b]p7.[/b] Given that $$\begin{cases} a + 5b + 9c = 1 \\ 4a + 2b + 3c = 2 \\ 7a + 8b + 6c = 9\end{cases}$$ what is $741a + 825b + 639c$? [b]p8.[/b] Hexagon $JAMESU$ has line of symmetry $MU$ (i.e., quadrilaterals $JAMU$ and $SEMU$ are reflections of each other), and $JA = AM = ME = ES = 1$. If all angles of $JAMESU$ are $135$ degrees except for right angles at $A$ and $E$, find the length of side $US$. [b]p9.[/b] Max is parked at the $11$ mile mark on a highway, when his pet cheetah, Min, leaps out of the car and starts running up the highway at its maximum speed. At the same time, Max starts his car and starts driving down the highway at $\frac12$ his maximum speed, driving all the way to the $10$ mile mark before realizing that his cheetah is gone! Max then immediately reverses directions and starts driving back up the highway at his maximum speed, nally catching up to Min at the $20$ mile mark. What is the ratio between Max's max speed and Min's max speed? [u]Round 4[/u] [b]p10.[/b] Kevin owns three non-adjacent square plots of land, each with side length an integer number of meters, whose total area is $2019$ m$^2$. What is the minimum sum of the perimeters of his three plots, in meters? [b]p11.[/b] Given a $5\times 5$ array of lattice points, how many squares are there with vertices all lying on these points? [b]p12.[/b] Let right triangle $ABC$ have $\angle A = 90^o$, $AB = 6$, and $AC = 8$. Let points $D,E$ be on side $AC$ such that $AD = EC = 2$, and let points $F,G$ be on side $BC$ such that $BF = FG = 3$. Find the area of quadrilateral $FGED$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949413p26408203]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Morocco National Olympiad, 4

Let $ABC$ be a triangle with area $1$ and $P$ the middle of the side $[BC]$. $M$ and $N$ are two points of $[AB]-\left \{ A,B \right \} $ and $[AC]-\left \{ A,C \right \}$ respectively such that $AM=2MB$ and$CN=2AN$. The two lines $(AP)$ and $(MN)$ intersect in a point $D$. Find the area of the triangle $ADN$.

2017 Ukraine Team Selection Test, 8

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

2023 Kazakhstan National Olympiad, 1

Tags: geometry
A triangle $ABC$ with obtuse angle $C$ and $AC>BC$ has center $O$ of its circumcircle $\omega$. The tangent at $C$ to $\omega$ meets $AB$ at $D$. Let $\Omega$ be the circumcircle of $AOB$. Let $OD, AC$ meet $\Omega$ at $E, F$ and let $OF \cap CE=T$, $OD \cap BC=K$. Prove that $OTBK$ is cyclic.

2004 Oral Moscow Geometry Olympiad, 5

The diagonals of the inscribed quadrilateral $ABCD$ meet at the point $M$, $\angle AMB = 60^o$. Equilateral triangles $ADK$ and $BCL$ are built outward on sides $AD$ and $BC$. Line $KL$ meets the circle circumscribed ariound $ABCD$ at points $P$ and $Q$. Prove that $PK = LQ$.

2015 IMO Shortlist, G2

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

2014 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$, let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A$, $\omega_B$, $\omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent. [i]Proposed by Robin Park[/i]

2010 Postal Coaching, 4

Tags: geometry , ratio
Let $C_1 , C_2$ be two circles in the plane intersecting at two distinct points. Let $P$ be the midpoint of a variable chord $AB$ of $C_2$ with the property that the circle on $AB$ as diameter meets $C_1$ at a point $T$ such that $P T$ is tangent to $C_1$ . Find the locus of $P$ .

2025 Harvard-MIT Mathematics Tournament, 7

Tags: geometry
Point $P$ is inside triangle $\triangle{ABC}$ such that $\angle{ABP}=\angle{ACP}.$ Given that $AB=6, AC=8, BC=7,$ and $\tfrac{BP}{PC}=\tfrac{1}{2},$ compute $\tfrac{[BPC]}{[ABC]}.$ (Here, $[XYZ]$ denotes the area of $\triangle{XYZ}.$)

2012 IMO Shortlist, G2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.