This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

STEMS 2021 Math Cat A, Q5

Tags: geometry
Let $ABC$ be a triangle with $I$ as incenter.The incircle touches $BC$ at $D$.Let $D'$ be the antipode of $D$ on the incircle.Make a tangent at $D'$ to incircle.Let it meet $(ABC)$ at $X,Y$ respectively.Let the other tangent from $X$ meet the other tangent from $Y$ at $Z$.Prove that $(ZBD)$ meets $IB$ at the midpoint of $IB$

2014 Hanoi Open Mathematics Competitions, 14

Let $\omega$ be a circle with centre $O$, and let $\ell$ be a line that does not intersect $\omega$. Let $P$ be an arbitrary point on $\ell$. Let $A,B$ denote the tangent points of the tangent lines from $P$. Prove that $AB$ passes through a point being independent of choosing $P$.

1992 Chile National Olympiad, 5

Tags: side , angle , geometry
In the $\triangle ABC $, points $ M, I, H $ are feet, respectively, of the median, bisector and height, drawn from $ A $. It is known that $ BC = 2 $, $ MI = 2-\sqrt {3} $ and $ AB > AC $. a) Prove that $ I$ lies between $ M $ and $ H $. b) Calculate $ AB ^ 2-AC ^ 2 $. c) Determine $ \dfrac {AB} {AC} $. d) Find the measure of all the sides and angles of the triangle.

2017 Iranian Geometry Olympiad, 4

Tags: geometry
Three circles $\omega_1,\omega_2,\omega_3$ are tangent to line $l$ at points $A,B,C$ ($B$ lies between $A,C$) and $\omega_2$ is externally tangent to the other two. Let $X,Y$ be the intersection points of $\omega_2$ with the other common external tangent of $\omega_1,\omega_3$. The perpendicular line through $B$ to $l$ meets $\omega_2$ again at $Z$. Prove that the circle with diameter $AC$ touches $ZX,ZY$. [i]Proposed by Iman Maghsoudi - Siamak Ahmadpour[/i]

2016 China Team Selection Test, 6

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

1956 Polish MO Finals, 6

Given a sphere of radius $ R $ and a plane $ \alpha $ having no common points with this sphere. A point $ S $ moves in the plane $ \alpha $, which is the vertex of a cone tangent to the sphere along a circle with center $ C $. Find the locus of point $ C $. [hide=another is Polish MO 1967 p6] [url=https://artofproblemsolving.com/community/c6h3388032p31769739]here[/url][/hide]

1967 IMO, 1

The parallelogram $ABCD$ has $AB=a,AD=1,$ $\angle BAD=A$, and the triangle $ABD$ has all angles acute. Prove that circles radius $1$ and center $A,B,C,D$ cover the parallelogram if and only \[a\le\cos A+\sqrt3\sin A.\]

2004 Unirea, 4

Tags: geometry
The circles $ C_1,C_2 $ meet at the points $ A,B. $ A line thru $ A $ intersects $ C_1,C_2 $ at $ C,D, $ respectively. Point $ A $ is not on the arc $ BC $ of $ C_1, $ neither on the arc $ BD $ of $ C_2. $ On the segments $ CD,BC,BD $ there are the points $ M,N,K $ such that $ MN $ is parallel to $ BD $ and $ MK $ is parallel with $ BC. $ Upon the arc $ BC $ let $ E $ be a point having the property that $ EN $ is perpendicular to $ BC, $ and upon the arc $ BD $ let $ F $ be a point chosen so that $ FK $ is perpendicular to $ BD. $ Show that the angle $ \angle EMF $ is right.

2016 Kyiv Mathematical Festival, P5

Tags: circles , geometry
Let $AD$ and $BE$ be the altitudes of acute triangle $ABC.$ The circles with diameters $AD$ and $BE$ intersect at points $S$ and $T$. Prove that $\angle ACS=\angle BCT.$

1962 AMC 12/AHSME, 16

Given rectangle $ R_1$ with one side $ 2$ inches and area $ 12$ square inches. Rectangle $ R_2$ with diagonal $ 15$ inches is similar to $ R_1.$ Expressed in square inches the area of $ R_2$ is: $ \textbf{(A)}\ \frac92 \qquad \textbf{(B)}\ 36 \qquad \textbf{(C)}\ \frac{135}{2} \qquad \textbf{(D)}\ 9 \sqrt{10} \qquad \textbf{(E)}\ \frac{27 \sqrt{10}}{4}$

2019 Harvard-MIT Mathematics Tournament, 1

Let $ABCD$ be a parallelogram. Points $X$ and $Y$ lie on segments $AB$ and $AD$ respectively, and $AC$ intersects $XY$ at point $Z$. Prove that \[\frac{AB}{AX} + \frac{AD}{AY} = \frac{AC}{AZ}.\]

2014 Greece Team Selection Test, 3

Let $ABC$ be an acute,non-isosceles triangle with $AB<AC<BC$.Let $D,E,Z$ be the midpoints of $BC,AC,AB$ respectively and segments $BK,CL$ are altitudes.In the extension of $DZ$ we take a point $M$ such that the parallel from $M$ to $KL$ crosses the extensions of $CA,BA,DE$ at $S,T,N$ respectively (we extend $CA$ to $A$-side and $BA$ to $A$-side and $DE$ to $E$-side).If the circumcirle $(c_{1})$ of $\triangle{MBD}$ crosses the line $DN$ at $R$ and the circumcirle $(c_{2})$ of $\triangle{NCD}$ crosses the line $DM$ at $P$ prove that $ST\parallel PR$.

1999 AMC 8, 5

A rectangular garden 50 feet long and 10 feet wide is enclosed by a fence. To make the garden larger, while using the same fence, its shape is changed to a square. By how many square feet does this enlarge the garden? $ \text{(A)}\ 100\qquad\text{(B)}\ 200\qquad\text{(C)}\ 300\qquad\text{(D)}\ 400\qquad\text{(E)}\ 500 $

2014 Harvard-MIT Mathematics Tournament, 3

$ABC$ is a triangle such that $BC = 10$, $CA = 12$. Let $M$ be the midpoint of side $AC$. Given that $BM$ is parallel to the external bisector of $\angle A$, find area of triangle $ABC$. (Lines $AB$ and $AC$ form two angles, one of which is $\angle BAC$. The external angle bisector of $\angle A$ is the line that bisects the other angle.

1930 Eotvos Mathematical Competition, 2

A straight line is drawn across an $8\times 8$ chessboard. It is said to [i]pierce [/i]a square if it passes through an interior point of the square. At most how many of the $64$ squares can this line [i]pierce[/i]?

2021 Greece JBMO TST, 4

Given a triangle$ABC$ with $AB<BC<AC$ inscribed in circle $(c)$. The circle $c(A,AB)$ (with center $A$ and radius $AB$) interects the line $BC$ at point $D$ and the circle $(c)$ at point $H$. The circle $c(A,AC)$ (with center $A$ and radius $AC$) interects the line $BC$ at point $Z$ and the circle $(c)$ at point $E$. Lines $ZH$ and $ED$ intersect at point $T$. Prove that the circumscribed circles of triangles $TDZ$ and $TEH$ are equal.

2023 239 Open Mathematical Olympiad, 7

Tags: geometry
The diagonals of convex quadrilateral $ABCD$ intersect at point $E$. Triangles $ABE$ and $CED$ have a common excircle $\Omega$, tangent to segments $AE$ and $DE$ at points $B_1$ and $C_1$, respectively. Denote by $I$ and $J$ the centers of the incircles of these triangles, respectively. Segments $IC_1$ and $JB_1$ intersect at point $S$. It is known that $S$ lies on $\Omega$. Prove that the circumcircle of triangle $AED$ is tangent to $\Omega$. [i]Proposed by David Brodsky[/i]

2013 Online Math Open Problems, 44

Suppose tetrahedron $PABC$ has volume $420$ and satisfies $AB = 13$, $BC = 14$, and $CA = 15$. The minimum possible surface area of $PABC$ can be written as $m+n\sqrt{k}$, where $m,n,k$ are positive integers and $k$ is not divisible by the square of any prime. Compute $m+n+k$. [i]Ray Li[/i]

2003 National Olympiad First Round, 13

Let $ABC$ be a triangle such that $|AB|=8$ and $|AC|=2|BC|$. What is the largest value of altitude from side $[AB]$? $ \textbf{(A)}\ 3\sqrt 2 \qquad\textbf{(B)}\ 3\sqrt 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ \dfrac {16}3 \qquad\textbf{(E)}\ 6 $

2017 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an acute triangle. Let $H$ denote its orthocenter and $D, E$ and $F$ the feet of its altitudes from $A, B$ and $C$, respectively. Let the common point of $DF$ and the altitude through $B$ be $P$. The line perpendicular to $BC$ through $P$ intersects $AB$ in $Q$. Furthermore, $EQ$ intersects the altitude through $A$ in $N$. Prove that $N$ is the midpoint of $AH$. Proposed by Karl Czakler

2007 Iran Team Selection Test, 1

In an isosceles right-angled triangle shaped billiards table , a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position [i]By Sam Nariman[/i]

2009 Germany Team Selection Test, 1

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2013 Serbia National Math Olympiad, 5

Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]

2017 Peru IMO TST, 9

Let $ABCD$ be a cyclie quadrilateral, $\omega$ be it's circumcircle and $M$ be the midpoint of the arc $AB$ of $\omega$ which does not contain the vertices $C$ and $D$. The line that passes through $M$ and the intersection point of segments $AC$ and $BD$, intersects again $\omega$ in $N$. Let $P$ and $Q$ be points in the $CD$ segment such that $\angle AQD = \angle DAP$ and $\angle BPC = \angle CBQ$. Prove that the circumcircle of $NPQ$ and $\omega$ are tangent to each other.

2023 Iran MO (3rd Round), 1

In triangle $\triangle ABC$ , $I$ is the incenter and $M$ is the midpoint of arc $(BC)$ in the circumcircle of $(ABC)$not containing $A$. Let $X$ be an arbitrary point on the external angle bisector of $A$. Let $BX \cap (BIC) = T$. $Y$ lies on $(AXC)$ , different from $A$ , st $MA=MY$ . Prove that $TC || AY$ (Assume that $X$ is not on $(ABC)$ or $BC$)