Found problems: 25757
2025 CMIMC Geometry, 4
Let $ABCDEF$ be a regular hexagon with side length $1,$ and let $G$ be the midpoint of side $\overline{CD},$ and define $H$ to be the unique point on side $\overline{DE}$ such that $AGHF$ is a trapezoid. Find the length of the altitude dropped from point $H$ to $\overline{AG}.$
1996 All-Russian Olympiad, 3
Show that for $n\ge 5$, a cross-section of a pyramid whose base is a regular $n$-gon cannot be a regular $(n + 1)$-gon.
[i]N. Agakhanov, N. Tereshin[/i]
2025 AIME, 6
Circle $\omega_1$ with radius $6$ centered at point $A$ is internally tangent at point $B$ to circle $\omega_2$ with radius $15$. Points $C$ and $D$ lie on $\omega_2$ such that $\overline{BC}$ is a diameter of $\omega_2$ and $\overline{BC} \perp \overline{AD}$. The rectangle $EFGH$ is inscribed in $\omega_1$ such that $\overline{EF} \perp \overline{BC}$, $C$ is closer to $\overline{GH}$ than to $\overline{EF}$, and $D$ is closer to $\overline{FG}$ than to $\overline{EH}$, as shown. Triangles $\triangle DGF$ and $\triangle CHG$ have equal areas. The area of rectangle $EFGH$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
[asy]
size(5cm);
defaultpen(fontsize(10pt));
pair A = (9, 0), B = (15, 0), C = (-15, 0), D = (9, 12), E = (9+12/sqrt(5), -6/sqrt(5)), F = (9+12/sqrt(5), 6/sqrt(5)), G = (9-12/sqrt(5), 6/sqrt(5)), H = (9-12/sqrt(5), -6/sqrt(5));
filldraw(G--H--C--cycle, lightgray);
filldraw(D--G--F--cycle, lightgray);
draw(B--C);
draw(A--D);
draw(E--F--G--H--cycle);
draw(circle(origin, 15));
draw(circle(A, 6));
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
dot(G);
dot(H);
label("$A$", A, (.8, -.8));
label("$B$", B, (.8, 0));
label("$C$", C, (-.8, 0));
label("$D$", D, (.4, .8));
label("$E$", E, (.8, -.8));
label("$F$", F, (.8, .8));
label("$G$", G, (-.8, .8));
label("$H$", H, (-.8, -.8));
label("$\omega_1$", (9, -5));
label("$\omega_2$", (-1, -13.5));
[/asy]
2016 District Olympiad, 1
Let $ ABCD $ be a sqare and $ E $ be a point situated on the segment $ BD, $ but not on the mid. Denote by $ H $ and $ K $ the orthocenters of $ ABE, $ respectively, $ ADE. $ Show that $ \overrightarrow{BH}=\overrightarrow{KD} . $
2014 Harvard-MIT Mathematics Tournament, 6
In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.
2007 Korea - Final Round, 1
Let $ O$ be the circumcenter of an acute triangle $ ABC$ and let $ k$ be the circle with center $ P$ that is tangent to $ O$ at $ A$ and tangent to side $ BC$ at $ D$. Circle $ k$ meets $ AB$ and $ AC$ again at $ E$ and $ F$ respectively. The lines $ OP$ and $ EP$ meet $ k$ again at $ I$ and $ G$. Lines $ BO$ and $ IG$ intersect at $ H$. Prove that $ \frac{{DF}^2}{AF}\equal{}GH$.
1974 Spain Mathematical Olympiad, 7
A tank has the shape of a regular hexagonal prism, whose bases are $1$ m on a side and its height is $10$ m. The lateral edges are placed in an oblique position and is partially filled with $9$ m$^3$ of water. The plane of the free surface of the water cuts to all lateral edges. One of them is left with a part of $2$ m under water. What part is under water on the opposite side edge of the prism?
2021 CMIMC, 1.5
Let $\gamma_1, \gamma_2, \gamma_3$ be three circles with radii $3, 4, 9,$ respectively, such that $\gamma_1$ and $\gamma_2$ are externally tangent at $C,$ and $\gamma_3$ is internally tangent to $\gamma_1$ and $\gamma_2$ at $A$ and $B,$ respectively. Suppose the tangents to $\gamma_3$ at $A$ and $B$ intersect at $X.$ The line through $X$ and $C$ intersect $\gamma_3$ at two points, $P$ and $Q.$ Compute the length of $PQ.$
[i]Proposed by Kyle Lee[/i]
Denmark (Mohr) - geometry, 2018.2
The figure shows a large circle with radius $2$ m and four small circles with radii $1$ m. It is to be painted using the three shown colours. What is the cost of painting the figure?
[img]https://1.bp.blogspot.com/-oWnh8uhyTIo/XzP30gZueKI/AAAAAAAAMUY/GlC3puNU_6g6YRf6hPpbQW8IE8IqMP3ugCLcBGAsYHQ/s0/2018%2BMohr%2Bp2.png[/img]
2017 Romania Team Selection Test, P4
Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.
2022 Assara - South Russian Girl's MO, 3
In a convex quadrilateral $ABCD$, angles $B$ and $D$ are right angles. On on sides $AB$, $BC$, $CD$, $DA$ points $K$, $L$, $M$, $N$ are taken respectively so that $KN \perp AC$ and $LM \perp AC$. Prove that $KM$, $LN$ and $AC$ intersect at one point.
1998 IberoAmerican Olympiad For University Students, 4
Four circles of radius $1$ with centers $A,B,C,D$ are in the plane in such a way that each circle is tangent to two others. A fifth circle passes through the center of two of the circles and is tangent to the other two.
Find the possible values of the area of the quadrilateral $ABCD$.
2018 BAMO, B
A square with sides of length $1$ cm is given. There are many different ways to cut the square into four rectangles.
Let $S$ be the sum of the four rectangles’ perimeters. Describe all possible values of $S$ with justification.
2011 Tournament of Towns, 3
(a) Does there exist an innite triangular beam such that two of its cross-sections are similar but not congruent triangles?
(b) Does there exist an innite triangular beam such that two of its cross-sections are equilateral triangles of sides $1$ and $2$ respectively?
2016 Polish MO Finals, 2
Let $ABCD$ be a quadrilateral circumscribed on the circle $\omega$ with center $I$. Assume $\angle BAD+ \angle ADC <\pi$. Let $M, \ N$ be points of tangency of $\omega $ with $AB, \ CD$ respectively. Consider a point $K \in MN$ such that $AK=AM$. Prove that $ID$ bisects the segment $KN$.
2002 Belarusian National Olympiad, 6
The altitude $CH$ of a right triangle $ABC$, with $\angle{C}=90$, cut the angles bisectors $AM$ and $BN$ at $P$ and $Q$, and let $R$ and $S$ be the midpoints of $PM$ and $QN$. Prove that $RS$ is parallel to the hypotenuse of $ABC$
2018 Moscow Mathematical Olympiad, 3
$O$ is circumcircle and $AH$ is the altitude of $\triangle ABC$. $P$ is the point on line $OC$ such that $AP \perp OC$. Prove, that midpoint of $AB$ lies on the line $HP$.
2005 MOP Homework, 6
Consider the three disjoint arcs of a circle determined by three points of the circle. We construct a circle around each of the midpoint of every arc which goes the end points of the arc. Prove that the three circles pass through a common point.
2016 India Regional Mathematical Olympiad, 1
Given are two circles $\omega_1,\omega_2$ which intersect at points $X,Y$. Let $P$ be an arbitrary point on $\omega_1$. Suppose that the lines $PX,PY$ meet $\omega_2$ again at points $A,B$ respectively. Prove that the circumcircles of all triangles $PAB$ have the same radius.
1955 Poland - Second Round, 3
What should the angle at the vertex of an isosceles triangle be so that it is possible to construct a triangle with sides equal to the height, base, and one of the other sides of the isosceles triangle?
2023 Stars of Mathematics, 3
The triangle $ABC$ is isosceles with apex at $A{}$ and $M,N,P$ are the midpoints of the sides $BC,CA,AB$ respectively. Let $Q{}$ and $R{}$ be points on the segments $BM$ and $CM$ such that $\angle BAQ =\angle MAR.$ The segment $NP{}$ intersects $AQ,AR$ at $U,V$ respectively. The point $S{}$ is considered on the ray $AQ$ such that $SV$ is the angle bisector of $\angle ASM.$ Similarly, the point $T{}$ lies on the ray $AR$ uch that $TU$ is the angle bisector of $\angle ATM.$ Prove that one of the intersection points of the circles $(NUS)$ and $(PVT)$ lies on the line $AM.$
[i]Proposed by Flavian Georgescu[/i]
2012 Oral Moscow Geometry Olympiad, 5
Given a circle and a chord $AB$, different from the diameter. Point $C$ moves along the large arc $AB$. The circle passing through passing through points $A, C$ and point $H$ of intersection of altitudes of of the triangle $ABC$, re-intersects the line $BC$ at point $P$. Prove that line $PH$ passes through a fixed point independent of the position of point $C$.
2023 Irish Math Olympiad, P3
Let $A, B, C, D, E$ be five points on a circle such that $|AB| = |CD|$ and $|BC| = |DE|$. The segments $AD$ and $BE$ intersect at $F$. Let $M$ denote the midpoint of segment $CD$. Prove that the circle of center $M$ and radius $ME$ passes through the midpoint of segment $AF$.
1975 Vietnam National Olympiad, 3
Let $ABCD$ be a tetrahedron with $BA \perp AC,DB \perp (BAC)$. Denote by $O$ the midpoint of $AB$, and $K$ the foot of the perpendicular from $O$ to $DC$. Suppose that $AC = BD$. Prove that $\frac{V_{KOAC}}{V_{KOBD}}=\frac{AC}{BD}$ if and only if $2AC \cdot BD = AB^2$.
2013 Vietnam Team Selection Test, 1
The $ABCD$ is a cyclic quadrilateral with no parallel sides inscribed in circle $(O, R)$. Let $E$ be the intersection of two diagonals and the angle bisector of $AEB$ cut the lines $AB, BC, CD, DA$ at $M, N, P, Q$ respectively .
a) Prove that the circles $(AQM), (BMN), (CNP), (DPQ)$ are passing through a point. Call that point $K$.
b) Denote $min \,\{AC, BD\} = m$. Prove that $OK \le \dfrac{2R^2}{\sqrt{4R^2-m^2}}$.