Found problems: 25757
2017 Pan-African Shortlist, G?
Let $ABC$ be a triangle with $H$ its orthocenter. The circle with diameter $[AC]$ cuts the circumcircle of triangle $ABH$ at $K$. Prove that the point of intersection of the lines $CK$ and $BH$ is the midpoint of the segment $[BH]$
1988 Balkan MO, 3
Let $ABCD$ be a tetrahedron and let $d$ be the sum of squares of its edges' lengths. Prove that the tetrahedron can be included in a region bounded by two parallel planes, the distances between the planes being at most $\frac{\sqrt{d}}{2\sqrt{3}}$
2014 Sharygin Geometry Olympiad, 9
Two circles $\omega_1$ and $\omega_2$ touching externally at point $L$ are inscribed into angle $BAC$. Circle $\omega_1$ touches ray $AB$ at point $E$, and circle $\omega_2$ touches ray $AC$ at point $M$. Line $EL$ meets $\omega_2$ for the second time at point $Q$. Prove that $MQ\parallel AL$.
2013 India IMO Training Camp, 2
Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.
EMCC Accuracy Rounds, 2014
[b]p1.[/b] Chad lives on the third floor of an apartment building with ten floors. He leaves his room and goes up two floors, goes down four floors, goes back up five floors, and finally goes down one floor, where he finds Jordan's room. On which floor does Jordan live?
[b]p2.[/b] A real number $x$ satisfies the equation $2014x + 1337 = 1337x + 2014$. What is $x$?
[b]p3.[/b] Given two points on the plane, how many distinct regular hexagons include both of these points as vertices?
[b]p4.[/b] Jordan has six different files on her computer and needs to email them to Chad. The sizes of these files are $768$, $1024$, $2304$, $2560$, $4096$, and $7680$ kilobytes. Unfortunately, the email server holds a limit of $S$ kilobytes on the total size of the attachments per email, where $S$ is a positive integer. It is additionally given that all of the files are indivisible. What is the maximum value of S for which it will take Jordan at least three emails to transmit all six files to Chad?
[b]p5.[/b] If real numbers $x$ and $y$ satisfy $(x + 2y)^2 + 4(x + 2y + 2 - xy) = 0$, what is $x + 2y$?
[b]p6.[/b] While playing table tennis against Jordan, Chad came up with a new way of scoring. After the first point, the score is regarded as a ratio. Whenever possible, the ratio is reduced to its simplest form. For example, if Chad scores the first two points of the game, the score is reduced from $2:0$ to $1:0$. If later in the game Chad has $5$ points and Jordan has $9$, and Chad scores a point, the score is automatically reduced from $6:9$ to $2:3$. Chad's next point would tie the game at $1:1$. Like normal table tennis, a player wins if he or she is the first to obtain $21$ points. However, he or she does not win if after his or her receipt of the $21^{st}$ point, the score is immediately reduced. Chad and Jordan start at $0:0$ and finish the game using this rule, after which Jordan notes a curiosity: the score was never reduced. How many possible games could they have played? Two games are considered the same if and only if they include the exact same sequence of scoring.
[b]p7.[/b] For a positive integer $m$, we define $m$ as a factorial number if and only if there exists a positive integer $k$ for which $m = k \cdot (k - 1) \cdot ... \cdot 2 \cdot 1$. We define a positive integer $n$ as a Thai number if and only if $n$ can be written as both the sum of two factorial numbers and the product of two factorial numbers. What is the sum of the five smallest Thai numbers?
[b]p8.[/b] Chad and Jordan are in the Exeter Space Station, which is a triangular prism with equilateral bases. Its height has length one decameter and its base has side lengths of three decameters. To protect their station against micrometeorites, they install a force field that contains all points that are within one decameter of any point of the surface of the station. What is the volume of the set of points within the force field and outside the station, in cubic decameters?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 USA TSTST, 9
Let $ABC$ be a triangle with incenter $I$. Points $K$ and $L$ are chosen on segment $BC$ such that the incircles of $\triangle ABK$ and $\triangle ABL$ are tangent at $P$, and the incircles of $\triangle ACK$ and $\triangle ACL$ are tangent at $Q$. Prove that $IP=IQ$.
[i]Ankan Bhattacharya[/i]
2001 Croatia Team Selection Test, 2
Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.
2013 AMC 12/AHSME, 20
For $135^\circ < x < 180^\circ$, points $P=(\cos x, \cos^2 x), Q=(\cot x, \cot^2 x), R=(\sin x, \sin^2 x)$ and $S =(\tan x, \tan^2 x)$ are the vertices of a trapezoid. What is $\sin(2x)$?
$ \textbf{(A)}\ 2-2\sqrt{2}\qquad\textbf{(B)}\ 3\sqrt{3}-6\qquad\textbf{(C)}\ 3\sqrt{2}-5\qquad\textbf{(D)}\ -\frac{3}{4}\qquad\textbf{(E)}\ 1-\sqrt{3} $
2003 Romania National Olympiad, 4
In tetrahedron $ ABCD$, $ G_1,G_2$ and $ G_3$ are barycenters of the faces $ ACD,ABD$ and $ BCD$ respectively.
(a) Prove that the straight lines $ BG_1,CG_2$ and $ AG_3$ are concurrent.
(b) Knowing that $ AG_3\equal{}8,BG_1\equal{}12$ and $ CG_2\equal{}20$ compute the maximum possible value of the volume of $ ABCD$.
2020 China Northern MO, BP4
In $\triangle ABC$, $\angle BAC = 60^{\circ}$, point $D$ lies on side $BC$, $O_1$ and $O_2$ are the centers of the circumcircles of $\triangle ABD$ and $\triangle ACD$, respectively. Lines $BO_1$ and $CO_2$ intersect at point $P$. If $I$ is the incenter of $\triangle ABC$ and $H$ is the orthocenter of $\triangle PBC$, then prove that the four points $B,C,I,H$ are on the same circle.
2022 Peru MO (ONEM), 2
Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$ and let $G$ be the point of the segment $AD$ such that $AG = 2GD$. Let $E$ and $F$ be points on the sides $AB$ and $AC$, respectively, such that$ G$ lies on the segment $EF$. Let $M$ and $N$ be points of the segments $AE$ and $AF$, respectively, such that $ME = EB$ and $NF = FC$.
a) Prove that the area of the quadrilateral $BMNC$ is equal to four times the area of the triangle $DEF$.
b) Prove that the quadrilaterals $MNFE$ and $AMDN$ have the same area.
1992 Turkey Team Selection Test, 2
The line passing through $B$ is perpendicular to the side $AC$ at $E$. This line meets the circumcircle of $\triangle ABC$ at $D$. The foot of the perpendicular from $D$ to the side $BC$ is $F$. If $O$ is the center of the circumcircle of $\triangle ABC$, prove that $BO$ is perpendicular to $EF$.
2018 Puerto Rico Team Selection Test, 3
Let $M$ be the point of intersection of diagonals $AC$ and $BD$ of the convex quadrilateral $ABCD$. Let $K$ be the point of intersection of the extension of side $AB$ (beyond$A$) with the bisector of the angle $ACD$. Let $L$ be the intersection of $KC$ and $BD$. If $MA \cdot CD = MB \cdot LD$, prove that the angle $BKC$ is equal to the angle $CDB$.
2009 Purple Comet Problems, 23
Square $ABCD$ has side length $4$. Points $E$ and $F$ are the midpoints of sides $AB$ and $CD$, respectively. Eight $1$ by $2$ rectangles are placed inside the square so that no two of the eight rectangles overlap (see diagram). If the arrangement of eight rectangles is chosen randomly, then there are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that none of the rectangles crosses the line segment $EF$ (as in the arrangement on the right). Find $m + n$.
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(10pt));
real r = 7;
path square=origin--(4,0)--(4,4)--(0,4)--cycle;
draw(square^^shift((r,0))*square,linewidth(1));
draw((1,4)--(1,0)^^(3,4)--(3,0)^^(0,2)--(1,2)^^(1,3)--(3,3)^^(1,1)--(3,1)^^(2,3)--(2,1)^^(3,2)--(4,2));
draw(shift((r,0))*((2,4)--(2,0)^^(0,2)--(4,2)^^(0,1)--(4,1)^^(0,3)--(2,3)^^(3,4)--(3,2)));
label("A",(4,4),NE);
label("A",(4+r,4),NE);
label("B",(0,4),NW);
label("B",(r,4),NW);
label("C",(0,0),SW);
label("C",(r,0),SW);
label("D",(4,0),SE);
label("D",(4+r,0),SE);
label("E",(2,4),N);
label("E",(2+r,4),N);
label("F",(2,0),S);
label("F",(2+r,0),S);
[/asy]
2010 Malaysia National Olympiad, 4
A square $ABCD$ has side length $ 1$. A circle passes through the vertices of the square. Let $P, Q, R, S$ be the midpoints of the arcs which are symmetrical to the arcs $AB$, $BC$, $CD$, $DA$ when reflected on sides $AB$, $B$C, $CD$, $DA$, respectively. The area of square $PQRS$ is $a+b\sqrt2$, where $a$ and $ b$ are integers. Find the value of $a+b$.
[img]https://cdn.artofproblemsolving.com/attachments/4/3/fc9e1bd71b26cfd9ff076db7aa0a396ae64e72.png[/img]
Maryland University HSMC part II, 2011
[b]p1.[/b] You are given three buckets with a capacity to hold $8$, $5$, and $3$ quarts of water, respectively. Initially, the first bucket is filled with $8$ quarts of water, while the remaining two buckets are empty. There are no markings on the buckets, so you are only allowed to empty a bucket into another one or to fill a bucket to its capacity using the water from one of the other buckets.
(a) Describe a procedure by which we can obtain exactly $6$ quarts of water in the first bucket.
(b) Describe a procedure by which we can obtain exactly $4$ quarts of water in the first bucket.
[b]p2.[/b] A point in the plane is called a lattice point if its coordinates are both integers. A triangle whose vertices are all lattice points is called a lattice triangle. In each case below, give explicitly the coordinates of the vertices of a lattice triangle $T$ that satisfies the stated properties.
(a) The area of $T$ is $1/2$ and two sides of $T$ have length greater than $2011$.
(b) The area of $T$ is $1/2$ and the three sides of $T$ each have length greater than $2011$.
[b]p3.[/b] Alice and Bob play several rounds of a game. In the $n$-th round, where $n = 1, 2, 3, ...$, the loser pays the winner $2^{n-1}$ dollars (there are no ties). After $40$ rounds, Alice has a profit of $\$2011$ (and Bob has lost $\$2011$). How many rounds of the game did Alice win, and which rounds were they? Justify your answer.
[b]p4.[/b] Each student in a school is assigned a $15$-digit ID number consisting of a string of $3$’s and $7$’s. Whenever $x$ and $y$ are two distinct ID numbers, then $x$ and $y$ differ in at least three entries. Show that the number of students in the school is less than or equal to $2048$.
[b]p5.[/b] A triangle $ABC$ has the following property: there is a point $P$ in the plane of $ABC$ such that the triangles $PAB$, $PBC$ and $PCA$ all have the same perimeter and the same area. Prove that:
(a) If $P$ is not inside the triangle $ABC$, then $ABC$ is a right-angled triangle.
(b) If $P$ is inside the triangle $ABC$, then $ABC$ is an equilateral triangle.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Denmark (Mohr) - geometry, 2014.3
The points $C$ and $D$ lie on a halfline from the midpoint $M$ of a segment $AB$, so that $|AC| = |BD|$. Prove that the angles $u = \angle ACM$ and $v = \angle BDM$ are equal.
[img]https://1.bp.blogspot.com/-tQEJ1VBCa8U/XzT7IhwlZHI/AAAAAAAAMVI/xpRdlj5Rl64VUt_tCRsQ1UxIsv_SGrMlACLcBGAsYHQ/s0/2014%2BMohr%2Bp3.png[/img]
2010 AMC 10, 7
A triangle has side lengths 10, 10, and 12. A rectangle has width 4 and area equal to the area of the triangle. What is the perimeter of this rectangle?
$ \textbf{(A)}\ 16\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 36$
2006 Sharygin Geometry Olympiad, 19
Through the midpoints of the sides of the triangle $T$, straight lines are drawn perpendicular to the bisectors of the opposite angles of the triangle. These lines formed a triangle $T_1$. Prove that the center of the circle circumscribed about $T_1$ is in the midpoint of the segment formed by the center of the inscribed circle and the intersection point of the heights of triangle $T$.
2013 Saudi Arabia BMO TST, 1
$ABCD$ is a cyclic quadrilateral such that $AB = BC = CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE = 19$ and $ED = 6$, find the possible values of $AD$.
2022 IMO, 4
Let $ABCDE$ be a convex pentagon such that $BC=DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB=TD,TC=TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P,B,A,Q$ occur on their line in that order. Let line $AE$ intersect $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R,E,A,S$ occur on their line in that order. Prove that the points $P,S,Q,R$ lie on a circle.
2007 Stanford Mathematics Tournament, 12
Pete has some trouble slicing a 20-inch (diameter) pizza. His first two cuts (from center to circumference of the pizza) make a 30º slice. He continues making cuts until he has gone around the whole pizza, each time trying to copy the angle of the previous slice but in fact adding 2º each time. That is, he makes adjacent slices of 30º, 32º, 34º, and so on. What is the area of the smallest slice?
2012 JBMO ShortLists, 2
Let $ABC$ be an isosceles triangle with $AB=AC$ . Let also $\omega$ be a circle of center $K$ tangent to the line $AC$ at $C$ which intersects the segment $BC$ again at $H$ . Prove that $HK \bot AB $.
1958 February Putnam, A7
Show that ten equal-sized squares cannot be placed on a plane in such a way that no two have an interior point in common and the first touches each of the others.
2023 Flanders Math Olympiad, 2
In the plane, the point $M$ is the midpoint of a line segment $[AB]$ and $\ell$ is an arbitrary line that has no has a common point with the line segment $[AB]$ (and is also not perpendicular to $[AB]$). The points $X$ and $Y$ are the perpendicular projections of $A$ and $B$ onto $\ell$, respectively. Show that the circumscribed circles of triangle $\vartriangle AMX$ and triangle $\vartriangle BMY$ have the same radius.