Found problems: 393
2003 Polish MO Finals, 1
In an acute-angled triangle $ABC, CD$ is the altitude. A line through the midpoint $M$ of side $AB$ meets the rays $CA$ and $CB$ at $K$ and $L$ respectively such that $CK = CL.$ Point $S$ is the circumcenter of the triangle $CKL.$ Prove that $SD = SM.$
2012 South africa National Olympiad, 5
Let $ABC$ be a triangle such that $AB\neq AC$. We denote its orthocentre by $H$, its circumcentre by $O$ and the midpoint of $BC$ by $D$. The extensions of $HD$ and $AO$ meet in $P$. Prove that triangles $AHP$ and $ABC$ have the same centroid.
2025 International Zhautykov Olympiad, 5
Let $A_1C_2B_1B_2C_1A_2$ be a cyclic convex hexagon inscribed in circle $\Omega$, centered at $O$. Let $\{ P \} = A_2B_2 \cap A_1B_1$ and $\{ Q \} = A_2C_2 \cap A_1C_1$. Let $\Gamma_1$ be a circle tangent to $OB_1$ and $OC_1$ at $B_1,C_1$ respectively. Similarly, define $\Gamma_2$ to be the circle tangent to $OB_2,OC_2$ at $B_2, C_2$ respectively. Prove that there is a homothety that sends $\Gamma_1$ to $\Gamma_2$, whose center lies on $PQ$
2012 Iran Team Selection Test, 3
Suppose $ABCD$ is a parallelogram. Consider circles $w_1$ and $w_2$ such that $w_1$ is tangent to segments $AB$ and $AD$ and $w_2$ is tangent to segments $BC$ and $CD$. Suppose that there exists a circle which is tangent to lines $AD$ and $DC$ and externally tangent to $w_1$ and $w_2$. Prove that there exists a circle which is tangent to lines $AB$ and $BC$ and also externally tangent to circles $w_1$ and $w_2$.
[i]Proposed by Ali Khezeli[/i]
2013 All-Russian Olympiad, 3
The incircle of triangle $ ABC $ has centre $I$ and touches the sides $ BC $, $ CA $, $ AB $ at points $ A_1 $, $ B_1 $, $ C_1 $, respectively. Let $ I_a $, $ I_b $, $ I_c $ be excentres of triangle $ ABC $, touching the sides $ BC $, $ CA $, $ AB $ respectively. The segments $ I_aB_1 $ and $ I_bA_1 $ intersect at $ C_2 $. Similarly, segments $ I_bC_1 $ and $ I_cB_1 $ intersect at $ A_2 $, and the segments $ I_cA_1 $ and $ I_aC_1 $ at $ B_2 $. Prove that $ I $ is the center of the circumcircle of the triangle $ A_2B_2C_2 $.
[i]L. Emelyanov, A. Polyansky[/i]
2009 Iran MO (3rd Round), 3
An arbitary triangle is partitioned to some triangles homothetic with itself. The ratio of homothety of the triangles can be positive or negative.
Prove that sum of all homothety ratios equals to $1$.
Time allowed for this problem was 45 minutes.
2008 USAMO, 2
Let $ ABC$ be an acute, scalene triangle, and let $ M$, $ N$, and $ P$ be the midpoints of $ \overline{BC}$, $ \overline{CA}$, and $ \overline{AB}$, respectively. Let the perpendicular bisectors of $ \overline{AB}$ and $ \overline{AC}$ intersect ray $ AM$ in points $ D$ and $ E$ respectively, and let lines $ BD$ and $ CE$ intersect in point $ F$, inside of triangle $ ABC$. Prove that points $ A$, $ N$, $ F$, and $ P$ all lie on one circle.
2008 Dutch Mathematical Olympiad, 1
Suppose we have a square $ABCD$ and a point $S$ in the interior of this square.
Under homothety with centre $S$ and ratio of magnification $k > 1$, this square becomes another square $A'B'C'D'$.
Prove that the sum of the areas of the two quadrilaterals $A'ABB'$ and $C'CDD'$ are equal to the sum of the areas of the two quadrilaterals $B'BCC'$ and $D'DAA'$.
[asy]
unitsize(3 cm);
pair[] A, B, C, D;
pair S;
A[1] = (0,1);
B[1] = (0,0);
C[1] = (1,0);
D[1] = (1,1);
S = (0.3,0.6);
A[0] = interp(S,A[1],2/3);
B[0] = interp(S,B[1],2/3);
C[0] = interp(S,C[1],2/3);
D[0] = interp(S,D[1],2/3);
draw(A[0]--B[0]--C[0]--D[0]--cycle);
draw(A[1]--B[1]--C[1]--D[1]--cycle);
draw(A[1]--S, dashed);
draw(B[1]--S, dashed);
draw(C[1]--S, dashed);
draw(D[1]--S, dashed);
dot("$A$", A[0], N);
dot("$B$", B[0], SE);
dot("$C$", C[0], SW);
dot("$D$", D[0], SE);
dot("$A'$", A[1], NW);
dot("$B'$", B[1], SW);
dot("$C'$", C[1], SE);
dot("$D'$", D[1], NE);
dot("$S$", S, dir(270));
[/asy]
2012 IberoAmerican, 2
Let $ABC$ be a triangle, $P$ and $Q$ the intersections of the parallel line to $BC$ that passes through $A$ with the external angle bisectors of angles $B$ and $C$, respectively. The perpendicular to $BP$ at $P$ and the perpendicular to $CQ$ at $Q$ meet at $R$. Let $I$ be the incenter of $ABC$. Show that $AI = AR$.
2000 IMO, 6
Let $ AH_1, BH_2, CH_3$ be the altitudes of an acute angled triangle $ ABC$. Its incircle touches the sides $ BC, AC$ and $ AB$ at $ T_1, T_2$ and $ T_3$ respectively. Consider the symmetric images of the lines $ H_1H_2, H_2H_3$ and $ H_3H_1$ with respect to the lines $ T_1T_2, T_2T_3$ and $ T_3T_1$. Prove that these images form a triangle whose vertices lie on the incircle of $ ABC$.
2022 Iran MO (3rd Round), 2
Constant points $B$ and $C$ lie on the circle $\omega$. The point middle of $BC$ is named $M$ by us. Assume that $A$ is a variable point on the $\omega$ and $H$ is the orthocenter of the triangle $ABC$. From the point $H$ we drop a perpendicular line to $MH$ to intersect the lines $AB$ and $AC$ at $X$ and $Y$ respectively. Prove that with the movement of $A$ on the $\omega$, the orthocenter of the triangle $AXY$ also moves on a circle.
2006 QEDMO 3rd, 6
The incircle of a triangle $ABC$ touches its sides $BC$, $CA$, $AB$ at the points $X$, $Y$, $Z$, respectively. Let $X^{\prime}$, $Y^{\prime}$, $Z^{\prime}$ be the reflections of these points $X$, $Y$, $Z$ in the external angle bisectors of the angles $CAB$, $ABC$, $BCA$, respectively. Show that $Y^{\prime}Z^{\prime}\parallel BC$, $Z^{\prime}X^{\prime}\parallel CA$ and $X^{\prime}Y^{\prime}\parallel AB$.
2011 IMO Shortlist, 4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
[i]Proposed by Ismail Isaev and Mikhail Isaev, Russia[/i]
1985 Kurschak Competition, 3
We reflected each vertex of a triangle on the opposite side. Prove that the area of the triangle formed by these three reflection points is smaller than the area of the initial triangle multiplied by five.
2011 Federal Competition For Advanced Students, Part 2, 3
Two circles $k_1$ and $k_2$ with radii $r_1$ and $r_2$ touch each outside at point $Q$. The other endpoints of the diameters through $Q$ are $P$ on $k_1$ and $R$ on $k_2$.
We choose two points $A$ and $B$, one on each of the arcs $PQ$ of $k_1$. ($PBQA$ is a convex quadrangle.)
Further, let $C$ be the second point of intersection of the line $AQ$ with $k_2$ and let $D$ be the second point of intersection of the line $BQ$ with $k_2$.
The lines $PB$ and $RC$ intersect in $U$ and the lines $PA$ and $RD$ intersect in $V$ .
Show that there is a point $Z$ that lies on all of these lines $UV$.
2009 USAMO, 5
Trapezoid $ ABCD$, with $ \overline{AB}\parallel{}\overline{CD}$, is inscribed in circle $ \omega$ and point $ G$ lies inside triangle $ BCD$. Rays $ AG$ and $ BG$ meet $ \omega$ again at points $ P$ and $ Q$, respectively. Let the line through $ G$ parallel to $ \overline{AB}$ intersects $ \overline{BD}$ and $ \overline{BC}$ at points $ R$ and $ S$, respectively. Prove that quadrilateral $ PQRS$ is cyclic if and only if $ \overline{BG}$ bisects $ \angle CBD$.
2011 USA Team Selection Test, 1
In an acute scalene triangle $ABC$, points $D,E,F$ lie on sides $BC, CA, AB$, respectively, such that $AD \perp BC, BE \perp CA, CF \perp AB$. Altitudes $AD, BE, CF$ meet at orthocenter $H$. Points $P$ and $Q$ lie on segment $EF$ such that $AP \perp EF$ and $HQ \perp EF$. Lines $DP$ and $QH$ intersect at point $R$. Compute $HQ/HR$.
[i]Proposed by Zuming Feng[/i]
2005 Taiwan TST Round 2, 2
Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$.
[i]Proposed by Hojoo Lee, Korea[/i]
2009 Singapore Team Selection Test, 1
Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.
2009 Germany Team Selection Test, 3
There is given a convex quadrilateral $ ABCD$. Prove that there exists a point $ P$ inside the quadrilateral such that
\[
\angle PAB \plus{} \angle PDC \equal{} \angle PBC \plus{} \angle PAD \equal{} \angle PCD \plus{} \angle PBA \equal{} \angle PDA \plus{} \angle PCB = 90^{\circ}
\]
if and only if the diagonals $ AC$ and $ BD$ are perpendicular.
[i]Proposed by Dusan Djukic, Serbia[/i]
2006 Tuymaada Olympiad, 3
A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point.
[i]Proposed by F. Bakharev [/i]
2018 All-Russian Olympiad, 2
Circle $\omega$ is tangent to sides $AB, AC$ of triangle $ABC$. A circle $\Omega$ touches the side $AC$ and line $AB$ (produced beyond $B$), and touches $\omega$ at a point $L$ on side $BC$. Line $AL$ meets $\omega, \Omega$ again at $K, M$. It turned out that $KB \parallel CM$. Prove that $\triangle LCM$ is isosceles.
2006 Germany Team Selection Test, 2
Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle.
[i]Proposed by Dimitris Kontogiannis, Greece[/i]
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
1978 USAMO, 2
$ABCD$ and $A'B'C'D'$ are square maps of the same region, drawn to different scales and superimposed as shown in the figure. Prove that there is only one point $O$ on the small map that lies directly over point $O'$ of the large map such that $O$ and $O'$ each represent the same place of the country. Also, give a Euclidean construction (straight edge and compass) for $O$.
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
real theta = -100, r = 0.3; pair D2 = (0.3,0.76);
string[] lbl = {'A', 'B', 'C', 'D'}; draw(unitsquare); draw(shift(D2)*rotate(theta)*scale(r)*unitsquare);
for(int i = 0; i < lbl.length; ++i) {
pair Q = dir(135-90*i), P = (.5,.5)+Q/2^.5;
label("$"+lbl[i]+"'$", P, Q);
label("$"+lbl[i]+"$",D2+rotate(theta)*(r*P), rotate(theta)*Q);
}[/asy]