Found problems: 1389
2006 All-Russian Olympiad, 6
Let $K$ and $L$ be two points on the arcs $AB$ and $BC$ of the circumcircle of a triangle $ABC$, respectively, such that $KL\parallel AC$. Show that the incenters of triangles $ABK$ and $CBL$ are equidistant from the midpoint of the arc $ABC$ of the circumcircle of triangle $ABC$.
1984 AMC 12/AHSME, 18
A point $(x,y)$ is to be chosen in the coordinate plane so that it is equally distant from the x-axis, the y-axis, and the line $x+y = 2$. Then $x$ is
A. $\sqrt{2} - 1$
B. $\frac{1}{2}$
C. $2 - \sqrt{2}$
D. 1
E. Not uniquely determined
2021 Puerto Rico Team Selection Test, 2
Let $ABC$ be a right triangle with right angle at $ B$ and $\angle C=30^o$. If $M$ is midpoint of the hypotenuse and $I$ the incenter of the triangle, show that $ \angle IMB=15^o$.
1990 IMO Shortlist, 9
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
2015 IFYM, Sozopol, 8
The quadrilateral $ABCD$ is circumscribed around a circle $k$ with center $I$ and $DA\cap CB=E$, $AB\cap DC=F$. In $\Delta EAF$ and $\Delta ECF$ are inscribed circles $k_1 (I_1,r_1)$ and $k_2 (I_2,r_2)$ respectively. Prove that the middle point $M$ of $AC$ lies on the radical axis of $k_1$ and $k_2$.
2011 Morocco National Olympiad, 4
Two circles $C_{1}$ and $C_{2}$ intersect in $A$ and $B$. A line passing through $B$ intersects $C_{1}$ in $C$ and $C_{2}$ in $D$. Another line passing through $B$ intersects $C_{1}$ in $E$ and $C_{2}$ in $F$, $(CF)$ intersects $C_{1}$ and $C_{2}$ in $P$ and $Q$ respectively. Make sure that in your diagram, $B, E, C, A, P \in C_{1}$ and $B, D, F, A, Q \in C_{2}$ in this order. Let $M$ and $N$ be the middles of the arcs $BP$ and $BQ$ respectively. Prove that if $CD=EF$, then the points $C,F,M,N$ are cocylic in this order.
2003 Silk Road, 2
Let $s=\frac{AB+BC+AC}{2}$ be half-perimeter of triangle $ABC$. Let $L$ and $N$be a point's on ray's $AB$ and $CB$, for which $AL=CN=s$. Let $K$ is point, symmetric of point $B$ by circumcenter of $ABC$. Prove, that perpendicular from $K$ to $NL$ passes through incenter of $ABC$.
Solution for problem [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=365714&p=2011659#p2011659]here[/url]
1978 IMO Shortlist, 12
In a triangle $ABC$ we have $AB = AC.$ A circle which is internally tangent with the circumscribed circle of the triangle is also tangent to the sides $AB, AC$ in the points $P,$ respectively $Q.$ Prove that the midpoint of $PQ$ is the center of the inscribed circle of the triangle $ABC.$
2017 CHKMO, Q3
Let ABC be an acute-angled triangle. Let D be a point on the segment BC, I the incentre of ABC. The circumcircle of ABD meets BI at P and the circumcircle of ACD meets CI at Q. If the area of PID and the area of QID are equal, prove that PI*QD=QI*PD.
2005 Tuymaada Olympiad, 7
Let $I$ be the incentre of triangle $ABC$. A circle containing the points $B$ and $C$ meets the segments $BI$ and $CI$ at points $P$ and $Q$ respectively. It is known that $BP\cdot CQ=PI\cdot QI$. Prove that the circumcircle of the triangle $PQI$ is tangent to the circumcircle of $ABC$.
[i]Proposed by S. Berlov[/i]
2024 Bulgarian Autumn Math Competition, 11.2
Let $ABC$ be a triangle with $\angle ABC = 60^{\circ}$. Find the angles of the triangle if $\angle BHI = 60^{\circ}$, where $H$ and $I$ are the orthocenter and incenter of $ABC$
2016 CentroAmerican, 6
Let $\triangle ABC$ be triangle with incenter $I$ and circumcircle $\Gamma$. Let $M=BI\cap \Gamma$ and $N=CI\cap \Gamma$, the line parallel to $MN$ through $I$ cuts $AB$, $AC$ in $P$ and $Q$. Prove that the circumradius of $\odot (BNP)$ and $\odot (CMQ)$ are equal.
2014 EGMO, 2
Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.
2007 China Team Selection Test, 1
Let $ ABC$ be a triangle. Circle $ \omega$ passes through points $ B$ and $ C.$ Circle $ \omega_{1}$ is tangent internally to $ \omega$ and also to sides $ AB$ and $ AC$ at $ T,\, P,$ and $ Q,$ respectively. Let $ M$ be midpoint of arc $ BC\, ($containing $ T)$ of $ \omega.$ Prove that lines $ PQ,\,BC,$ and $ MT$ are concurrent.
2021 Oral Moscow Geometry Olympiad, 5
Let $ABC$ be a triangle, $I$ and $O$ be its incenter and circumcenter respectively. $A'$ is symmetric to $O$ with respect to line $AI$. Points $B'$ and $C'$ are defined similarly. Prove that the nine-point centers of triangles $ABC$ and $A'B'C'$ coincide.
2009 Korea National Olympiad, 2
Let $ABC$ be a triangle and $ P, Q ( \ne A, B, C ) $ are the points lying on segments $ BC , CA $. Let $ I, J, K $ be the incenters of triangle $ ABP, APQ, CPQ $. Prove that $ PIJK $ is a convex quadrilateral.
2019 Taiwan TST Round 2, 6
Given a triangle $ \triangle{ABC} $ whose incenter is $ I $ and $ A $-excenter is $ J $. $ A' $ is point so that $ AA' $ is a diameter of $ \odot\left(\triangle{ABC}\right) $. Define $ H_{1}, H_{2} $ to be the orthocenters of $ \triangle{BIA'} $ and $ \triangle{CJA'} $. Show that $ H_{1}H_{2} \parallel BC $
2003 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, $M$ is the point of intersection of the medians, $O$ is the center of the inscribed circle, $A', B', C'$ are the touchpoints with the sides $BC, CA, AB$, respectively. Prove that if $CA'= AB$, then $OM$ and $AB$ are perpendicular.
PS. There is a a typo
2022 Bulgarian Spring Math Competition, Problem 10.2
Let $\triangle ABC$ have incenter $I$. The line $CI$ intersects the circumcircle of $\triangle ABC$ for the second time at $L$, and $CI=2IL$. Points $M$ and $N$ lie on the segment $AB$, such that $\angle AIM =\angle BIN = 90^{\circ}$. Prove that $AB=2MN$.
2020 Regional Olympiad of Mexico Southeast, 2
Let $ABC$ a triangle with $AB<AC$ and let $I$ it´s incenter. Let $\Gamma$ the circumcircle of $\triangle BIC$. $AI$ intersect $\Gamma$ again in $P$. Let $Q$ a point in side $AC$ such that $AB=AQ$ and let $R$ a point in $AB$ with $B$ between $A$ and $R$ such that $AR=AC$. Prove that $IQPR$ is cyclic.
1996 Baltic Way, 5
Let $ABCD$ be a cyclic convex quadrilateral and let $r_a,r_b,r_c,r_d$ be the radii of the circles inscribed in the triangles $BCD, ACD, ABD, ABC$, respectively. Prove that $r_a+r_c=r_b+r_d$.
1994 IberoAmerican, 2
Let $ ABCD$ a cuadrilateral inscribed in a circumference. Suppose that there is a semicircle with its center on $ AB$, that
is tangent to the other three sides of the cuadrilateral.
(i) Show that $ AB \equal{} AD \plus{} BC$.
(ii) Calculate, in term of $ x \equal{} AB$ and $ y \equal{} CD$, the maximal area that can be reached for such quadrilateral.
Geometry Mathley 2011-12, 2.4
Let $ABC$ be a triangle inscribed in a circle of radius $O$. The angle bisectors $AD,BE,CF$ are concurrent at $I$. The points $M,N, P$ are respectively on $EF, FD$, and $DE$ such that $IM, IN, IP$ are perpendicular to $BC,CA,AB$ respectively. Prove that the three lines $AM,BN, CP$ are concurrent at a point on $OI$.
Nguyễn Minh Hà
Kyiv City MO Seniors Round2 2010+ geometry, 2019.11.3.1
It is known that in the triangle $ABC$ the smallest side is $BC$. Let $X, Y, K$ and $L$ - points on the sides $AB, AC$ and on the rays $CB, BC$, respectively, are such that $BX = BK = BC =CY =CL$. The line $KX$ intersects the line $LY$ at the point $M$. Prove that the intersection point of the medians $\vartriangle KLM$ coincides with the center of the inscribed circle $\vartriangle ABC$.
1992 IMO Longlists, 28
Two circles $ \Omega_{1}$ and $ \Omega_{2}$ are externally tangent to each other at a point $ I$, and both of these circles are tangent to a third circle $ \Omega$ which encloses the two circles $ \Omega_{1}$ and $ \Omega_{2}$.
The common tangent to the two circles $ \Omega_{1}$ and $ \Omega_{2}$ at the point $ I$ meets the circle $ \Omega$ at a point $ A$. One common tangent to the circles $ \Omega_{1}$ and $ \Omega_{2}$ which doesn't pass through $ I$ meets the circle $ \Omega$ at the points $ B$ and $ C$ such that the points $ A$ and $ I$ lie on the same side of the line $ BC$.
Prove that the point $ I$ is the incenter of triangle $ ABC$.
[i]Alternative formulation.[/i] Two circles touch externally at a point $ I$. The two circles lie inside a large circle and both touch it. The chord $ BC$ of the large circle touches both smaller circles (not at $ I$). The common tangent to the two smaller circles at the point $ I$ meets the large circle at a point $ A$, where the points $ A$ and $ I$ are on the same side of the chord $ BC$. Show that the point $ I$ is the incenter of triangle $ ABC$.