This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2004 Germany Team Selection Test, 3

Given six real numbers $a$, $b$, $c$, $x$, $y$, $z$ such that $0 < b-c < a < b+c$ and $ax + by + cz = 0$. What is the sign of the sum $ayz + bzx + cxy$ ?

2003 China National Olympiad, 1

Let $I$ and $H$ be the incentre and orthocentre of triangle $ABC$ respectively. Let $P,Q$ be the midpoints of $AB,AC$. The rays $PI,QI$ intersect $AC,AB$ at $R,S$ respectively. Suppose that $T$ is the circumcentre of triangle $BHC$. Let $RS$ intersect $BC$ at $K$. Prove that $A,I$ and $T$ are collinear if and only if $[BKS]=[CKR]$. [i]Shen Wunxuan[/i]

2023-24 IOQM India, 23

In the coordinate plane, a point is called a $\text{lattice point}$ if both of its coordinates are integers. Let $A$ be the point $(12,84)$. Find the number of right angled triangles $ABC$ in the coordinate plane $B$ and $C$ are lattice points, having a right angle at vertex $A$ and whose incenter is at the origin $(0,0)$.

2014 Germany Team Selection Test, 2

Let $ABCD$ be a convex cyclic quadrilateral with $AD=BD$. The diagonals $AC$ and $BD$ intersect in $E$. Let the incenter of triangle $\triangle BCE$ be $I$. The circumcircle of triangle $\triangle BIE$ intersects side $AE$ in $N$. Prove \[ AN \cdot NC = CD \cdot BN. \]

2012 Korea - Final Round, 2

For a triangle $ ABC $ which $ \angle B \ne 90^{\circ} $ and $ AB \ne AC $, define $ P_{ABC} $ as follows ; Let $ I $ be the incenter of triangle $ABC$, and let $ D, E, F $ be the intersection points with the incircle and segments $ BC, CA, AB $. Two lines $ AB $ and $ DI $ meet at $ S $ and let $ T $ be the intersection point of line $ DE $ and the line which is perpendicular with $ DF $ at $ F $. The line $ ST $ intersects line $ EF $ at $ R$. Now define $ P_{ABC} $ be one of the intersection points of the incircle and the circle with diameter $ IR $, which is located in other side with $ A $ about $ IR $. Now think of an isosceles triangle $ XYZ $ such that $ XZ = YZ > XY $. Let $ W $ be the point on the side $ YZ $ such that $ WY < XY $ and Let $ K = P_{YXW} $ and $ L = P_{ZXW} $. Prove that $ 2 KL \le XY $.

2018 Sharygin Geometry Olympiad, 3

The vertices of a triangle $DEF$ lie on different sides of a triangle $ABC$. The lengths of the tangents from the incenter of $DEF$ to the excircles of $ABC$ are equal. Prove that $4S_{DEF} \ge S_{ABC}$. [i]Note: By $S_{XYZ}$ we denote the area of triangle $XYZ$.[/i]

2003 USA Team Selection Test, 6

Let $\overline{AH_1}, \overline{BH_2}$, and $\overline{CH_3}$ be the altitudes of an acute scalene triangle $ABC$. The incircle of triangle $ABC$ is tangent to $\overline{BC}, \overline{CA},$ and $\overline{AB}$ at $T_1, T_2,$ and $T_3$, respectively. For $k = 1, 2, 3$, let $P_i$ be the point on line $H_iH_{i+1}$ (where $H_4 = H_1$) such that $H_iT_iP_i$ is an acute isosceles triangle with $H_iT_i = H_iP_i$. Prove that the circumcircles of triangles $T_1P_1T_2$, $T_2P_2T_3$, $T_3P_3T_1$ pass through a common point.

2022 EGMO, 1

Let $ABC$ be an acute-angled triangle in which $BC<AB$ and $BC<CA$. Let point $P$ lie on segment $AB$ and point $Q$ lie on segment $AC$ such that $P \neq B$, $Q \neq C$ and $BQ = BC = CP$. Let $T$ be the circumcenter of triangle $APQ$, $H$ the orthocenter of triangle $ABC$, and $S$ the point of intersection of the lines $BQ$ and $CP$. Prove that $T$, $H$, and $S$ are collinear.

2015 Czech-Polish-Slovak Junior Match, 4

Let $ABC$ ne a right triangle with $\angle ACB=90^o$. Let $E, F$ be respecitvely the midpoints of the $BC, AC$ and $CD$ be it's altitude. Next, let $P$ be the intersection of the internal angle bisector from $A$ and the line $EF$. Prove that $P$ is the center of the circle inscribed in the triangle $CDE$ .

2002 Turkey MO (2nd round), 2

Let $ABC$ be a triangle, and points $D,E$ are on $BA,CA$ respectively such that $DB=BC=CE$. Let $O,I$ be the circumcenter, incenter of $\triangle ABC$. Prove that the circumradius of $\triangle ADE$ is equal to $OI$.

2007 Turkey MO (2nd round), 2

Let $ABC$ be a triangle with $\angle B=90$. The incircle of $ABC$ touches the side $BC$ at $D$. The incenters of triangles $ABD$ and $ADC$ are $X$ and $Z$ , respectively. The lines $XZ$ and $AD$ are intersecting at the point $K$. $XZ$ and circumcircle of $ABC$ are intersecting at $U$ and $V$. Let $M$ be the midpoint of line segment $[UV]$ . $AD$ intersects the circumcircle of $ABC$ at $Y$ other than $A$. Prove that $|CY|=2|MK|$ .

2005 France Pre-TST, 1

Let $I$ be the incenter of the triangle $ABC$, et let $A',B',C'$ be the symmetric of $I$ with respect to the lines $BC,CA,AB$ respectively. It is known that $B$ belongs to the circumcircle of $A'B'C'$. Find $\widehat {ABC}$. Pierre.

VII Soros Olympiad 2000 - 01, 10.5

An acute-angled triangle $ABC$ is given. Points $A_1, B_1$ and $C_1$ are taken on its sides $BC, CA$ and $AB$, respectively, such that $\angle B_1A_1C_1 + 2 \angle BAC = 180^o$, $\angle A_1C_1B_1 + 2 \angle ACB = 180^o$, $\angle C_1B_1A_1 + 2 \angle CBA = 180^o$. Find the locus of the centers of the circles inscribed in triangles $A_1B_1C_1$ (all kinds of such triangles are considered).

2009 Moldova National Olympiad, 8.4

Prove that a right triangle has an angle equal to $30^o$ if and only if the center of the circle inscribed in this triangle is located on the perpendicular bisector of the median taken from the vertex of the right angle of the triangle.

2021 Saudi Arabia IMO TST, 5

Let $ABC$ be a non isosceles triangle with incenter $I$ . The circumcircle of the triangle $ABC$ has radius $R$. Let $AL$ be the external angle bisector of $\angle BAC $with $L \in BC$. Let $K$ be the point on perpendicular bisector of $BC$ such that $IL \perp IK$.Prove that $OK=3R$.

2006 Germany Team Selection Test, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2021 Iran RMM TST, 2

Let $ABC$ be a triangle with $AB \neq AC$ and with incenter $I$. Let $M$ be the midpoint of $BC$, and let $L$ be the midpoint of the circular arc $BAC$. Lines through $M$ parallel to $BI,CI$ meet $AB,AC$ at $E$ and $F$, respectively, and meet $LB$ and $LC$ at $P$ and $Q$, respectively. Show that $I$ lies on the radical axis of the circumcircles of triangles $EMF$ and $PMQ$. Proposed by [i]Andrew Wu[/i]

2016 Brazil National Olympiad, 1

Let $ABC$ be a triangle. $r$ and $s$ are the angle bisectors of $\angle ABC$ and $\angle BCA$, respectively. The points $E$ in $r$ and $D$ in $s$ are such that $AD \| BE$ and $AE \| CD$. The lines $BD$ and $CE$ cut each other at $F$. $I$ is the incenter of $ABC$. Show that if $A,F,I$ are collinear, then $AB=AC$.

1987 IMO Longlists, 52

Given a nonequilateral triangle $ABC$, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles $A'B'C'$ (the vertices listed counterclockwise) for which the triples of points $A,B', C'; A',B, C';$ and $A',B', C$ are collinear. [i]Proposed by Poland.[/i]

1993 IMO Shortlist, 4

Given a triangle $ABC$, let $D$ and $E$ be points on the side $BC$ such that $\angle BAD = \angle CAE$. If $M$ and $N$ are, respectively, the points of tangency of the incircles of the triangles $ABD$ and $ACE$ with the line $BC$, then show that \[\frac{1}{MB}+\frac{1}{MD}= \frac{1}{NC}+\frac{1}{NE}. \]

2005 IMO Shortlist, 3

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2008 Sharygin Geometry Olympiad, 2

(A.Myakishev) Let triangle $ A_1B_1C_1$ be symmetric to $ ABC$ wrt the incenter of its medial triangle. Prove that the orthocenter of $ A_1B_1C_1$ coincides with the circumcenter of the triangle formed by the excenters of $ ABC$.

1987 IMO Shortlist, 12

Given a nonequilateral triangle $ABC$, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles $A'B'C'$ (the vertices listed counterclockwise) for which the triples of points $A,B', C'; A',B, C';$ and $A',B', C$ are collinear. [i]Proposed by Poland.[/i]

2016 Bosnia and Herzegovina Team Selection Test, 5

Let $k$ be a circumcircle of triangle $ABC$ $(AC<BC)$. Also, let $CL$ be an angle bisector of angle $ACB$ $(L \in AB)$, $M$ be a midpoint of arc $AB$ of circle $k$ containing the point $C$, and let $I$ be an incenter of a triangle $ABC$. Circle $k$ cuts line $MI$ at point $K$ and circle with diameter $CI$ at $H$. If the circumcircle of triangle $CLK$ intersects $AB$ again at $T$, prove that $T$, $H$ and $C$ are collinear. .

2018 China Second Round Olympiad, 2

In triangle $\triangle ABC$, $AB<AC$, $M,D,E$ are the midpoints of $BC$, the arcs $BAC$ and $BC$ of the circumcircle of $\triangle ABC$ respectively. The incircle of $\triangle ABC$ touches $AB$ at $F$, $AE$ meets $BC$ at $G$, and the perpendicular to $AB$ at $B$ meets segment $EF$ at $N$. If $BN=EM$, prove that $DF$ is perpendicular to $FG$.