This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2020 Centroamerican and Caribbean Math Olympiad, 4

Consider a triangle $ABC$ with $BC>AC$. The circle with center $C$ and radius $AC$ intersects the segment $BC$ in $D$. Let $I$ be the incenter of triangle $ABC$ and $\Gamma$ be the circle that passes through $I$ and is tangent to the line $CA$ at $A$. The line $AB$ and $\Gamma$ intersect at a point $F$ with $F \neq A$. Prove that $BF=BD$.

2014 Sharygin Geometry Olympiad, 21

Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.

2004 China Western Mathematical Olympiad, 2

Let $ABCD$ be a convex quadrilateral, $I_1$ and $I_2$ be the incenters of triangles $ABC$ and $DBC$ respectively. The line $I_1I_2$ intersects the lines $AB$ and $DC$ at points $E$ and $F$ respectively. Given that $AB$ and $CD$ intersect in $P$, and $PE=PF$, prove that the points $A$, $B$, $C$, $D$ lie on a circle.

2020 OMpD, 4

Let $ABC$ be a triangle and $P$ be any point on the side $BC$. Let $I_1$,$I_2$ be the incenters of triangles $ABP$ and $ACP$, respectively. If $D$ is the point of tangency of the incircle of $ABC$ with the side $BC$, prove that $\angle I_1DI_2 = 90^o$.

2010 Balkan MO Shortlist, G3

The incircle of a triangle $A_0B_0C_0$ touches the sides $B_0C_0,C_0A_0,A_0B_0$ at the points $A,B,C$ respectively, and the incircle of the triangle $ABC$ with incenter $ I$ touches the sides $BC,CA, AB$ at the points $A_1, B_1,C_1$, respectively. Let $\sigma(ABC)$ and $\sigma(A_1B_1C)$ be the areas of the triangles $ABC$ and $A_1B_1C$ respectively. Show that if $\sigma(ABC) = 2 \sigma(A_1B_1C)$ , then the lines $AA_0, BB_0,IC_1$ pass through a common point .

2002 India IMO Training Camp, 7

Tags: geometry , incenter
Given two distinct circles touching each other internally, show how to construct a triangle with the inner circle as its incircle and the outer circle as its nine point circle.

2016 Korea - Final Round, 5

Tags: incenter , geometry
An acute triangle $\triangle ABC$ has incenter $I$, and the incircle hits $BC, CA, AB$ at $D, E, F$. Lines $BI, CI, BC, DI$ hits $EF$ at $K, L, M, Q$ and the line connecting the midpoint of segment $CL$ and $M$ hits the line segment $CK$ at $P$. Prove that $$PQ=\frac{AB \cdot KQ}{BI}$$

2003 France Team Selection Test, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

Kvant 2019, M2553

A circle centred at $I$ is tangent to the sides $BC, CA$, and $AB$ of an acute-angled triangle $ABC$ at $A_1, B_1$, and $C_1$, respectively. Let $K$ and $L$ be the incenters of the quadrilaterals $AB_1IC_1$ and $BA_1IC_1$, respectively. Let $CH$ be an altitude of triangle $ABC$. Let the internal angle bisectors of angles $AHC$ and $BHC$ meet the lines $A_1C_1$ and $B_1C_1$ at $P$ and $Q$, respectively. Prove that $Q$ is the orthocenter of the triangle $KLP$. Kolmogorov Cup 2018, Major League, Day 3, Problem 1; A. Zaslavsky

2012 Canada National Olympiad, 3

Let $ABCD$ be a convex quadrilateral and let $P$ be the point of intersection of $AC$ and $BD$. Suppose that $AC+AD=BC+BD$. Prove that the internal angle bisectors of $\angle ACB$, $\angle ADB$ and $\angle APB$ meet at a common point.

2002 IMO Shortlist, 3

The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$

Russian TST 2017, P1

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2003 Korea - Final Round, 1

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

1990 Balkan MO, 3

Let $ABC$ be an acute triangle and let $A_{1}, B_{1}, C_{1}$ be the feet of its altitudes. The incircle of the triangle $A_{1}B_{1}C_{1}$ touches its sides at the points $A_{2}, B_{2}, C_{2}$. Prove that the Euler lines of triangles $ABC$ and $A_{2}B_{2}C_{2}$ coincide.

2020 Brazil Team Selection Test, 3

Let $ABCD$ be a quadrilateral with a incircle $\omega$. Let $I$ be the center of $\omega$, suppose that the lines $AD$ and $BC$ intersect at $Q$ and the lines $AB$ and $CD$ intersect at $P$ with $B$ is in the segment $AP$ and $D$ is in the segment $AQ$. Let $X$ and $Y$ the incenters of $\triangle PBD$ and $\triangle QBD$ respectively. Let $R$ be the intersection of $PY$ and $QX$. Prove that the line $IR$ is perpendicular to $BD$.

2017 Princeton University Math Competition, A8

Triangle $ABC$ with $AB=4$, $BC=5$, $CA=6$ has circumcircle $\Omega$ and incircle $\omega$. Let $\Gamma$ be the circle tangent to $\Omega$ and the sides $AB$, $BC$, and let $X=\Gamma \cap \Omega$. Let $Y$, $Z$ be distinct points on $\Omega$ such that $XY$, $YZ$ are tangent to $\omega$. Find $YZ^2$. [i]The following fact may be useful: if $\triangle{ABC}$ has incircle $w$ with incenter $I$ and radius $r$, and $\triangle{DEF}$ is the intouch triangle (i.e. $D$, $E$, $F$ are intersections of incircle with $BC$, $CA$, $AB$, respectively) and $H$ is the orthocenter of $\triangle{DEF}$, then the inversion of $X$ about $\omega$ (i.e. the point $X'$ on ray $IX$ such that $IX' \cdot IX=r^2$) is the midpoint of $DH$.[/i]

2012 Bosnia And Herzegovina - Regional Olympiad, 4

Let $S$ be an incenter of triangle $ABC$ and let incircle touch sides $AC$ and $AB$ in points $P$ and $Q$, respectively. Lines $BS$ and $CS$ intersect line $PQ$ in points $M$ and $N$, respectively. Prove that points $M$, $N$, $B$ and $C$ are concyclic

2016 Postal Coaching, 5

Let $I$ and $O$ be respectively the incentre and circumcentre of a triangle $ABC$. If $AB = 2$, $AC = 3$ and $\angle AIO = 90^{\circ}$, find the area of $\triangle ABC$.

2019 Peru IMO TST, 3

Let $I,\ O$ and $\Gamma$ be the incenter, circumcenter and the circumcircle of triangle $ABC$, respectively. Line $AI$ meets $\Gamma$ at $M$ $(M\neq A)$. The circumference $\omega$ is tangent internally to $\Gamma$ at $T$, and is tangent to the lines $AB$ and $AC$. The tangents through $A$ and $T$ to $\Gamma$ intersect at $P$. Lines $PI$ and $TM$ meet at $Q$. Prove that the lines $QA$ and $MO$ meet at a point on $\Gamma$.

1997 IMO Shortlist, 9

Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.

2022 Turkey Team Selection Test, 3

In a triangle $ABC$, the incircle centered at $I$ is tangent to the sides $BC, AC$ and $AB$ at $D, E$ and $F$, respectively. Let $X, Y$ and $Z$ be the feet of the perpendiculars drawn from $A, B$ and $C$ to a line $\ell$ passing through $I$. Prove that $DX, EY$ and $FZ$ are concurrent.

2014 Taiwan TST Round 1, 3

Let $ABC$ be a triangle with incenter $I$, and suppose the incircle is tangent to $CA$ and $AB$ at $E$ and $F$. Denote by $G$ and $H$ the reflections of $E$ and $F$ over $I$. Let $Q$ be the intersection of $BC$ with $GH$, and let $M$ be the midpoint of $BC$. Prove that $IQ$ and $IM$ are perpendicular.

2012 Regional Olympiad of Mexico Center Zone, 4

On an acute triangle $ABC$ we draw the internal bisector of $<ABC$, $BE$, and the altitude $AD$, ($D$ on $BC$), show that $<CDE$ it's bigger than 45 degrees.

2017 Oral Moscow Geometry Olympiad, 5

The inscribed circle of the non-isosceles triangle $ABC$ touches sides $AB, BC$ and $AC$ at points $C_1, A_1$ and $B_1$, respectively. The circumscribed circle of the triangle $A_1BC_1$ intersects the lines $B_1A_1$ and $B_1C_1$ at the points $A_0$ and $C_0$, respectively. Prove that the orthocenter of triangle $A_0BC_0$, the center of the inscribed circle of triangle $ABC$ and the midpoint of the $AC$ lie on one straight line.

2022 Regional Competition For Advanced Students, 3

Let $ABC$ denote a triangle with $AC\ne BC$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $ABC$, respectively. The incircle touches $BC$ and $AC$ in the points $D$ and E, respectively. The circumcircles of the triangles $ABC$ and $CDE$ intersect in the two points $C$ and $P$. Prove that the common point $S$ of the lines $CU$ and $P I$ lies on the circumcircle of the triangle $ABC$. [i](Karl Czakler)[/i]