This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2013 India PRMO, 9

In a triangle $ABC$, let $H, I$ and $O$ be the orthocentre, incentre and circumcentre, respectively. If the points $B, H, I, C$ lie on a circle, what is the magnitude of $\angle BOC$ in degrees?

2004 Korea National Olympiad, 5

$A, B, C$, and $D$ are the four different points on the circle $O$ in the order. Let the centre of the scribed circle of triangle $ABC$, which is tangent to $BC$, be $O_1$. Let the centre of the scribed circle of triangle $ACD$, which is tangent to $CD$, be $O_2$. (1) Show that the circumcentre of triangle $ABO_1$ is on the circle $O$. (2) Show that the circumcircle of triangle $CO_1O_2$ always pass through a fixed point on the circle $O$, when $C$ is moving along arc $BD$.

2021-IMOC, G10

Let $O$, $I$ be the circumcenter and the incenter of triangle $ABC$, respectively, and let the incircle tangents $BC$ at $D$. Furthermore, suppose that $H$ is the orthocenter of triangle $BIC$, $N$ is the midpoint of the arc $BAC$, and $X$ is the intersection of $OI$ and $NH$. If $P$ is the reflection of $A$ with respect to $OI$, show that $\odot(IDP)$ and $\odot(IHX)$ are tangent to each other.

2022 Bulgarian Autumn Math Competition, Problem 9.2

Given is the triangle $ABC$ such that $BC=13, CA=14, AB=15$ Prove that $B$, the incenter $J$ and the midpoints of $AB$ and $BC$ all lie on a circle

1990 IMO Longlists, 25

The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$

2011 AMC 12/AHSME, 13

Triangle $ABC$ has side-lengths $AB=12$, $BC=24$, and $AC=18$. The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N$. What is the perimeter of $\triangle AMN$? $ \textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 33 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 42 $

2012 IMO Shortlist, G6

Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$. The points $D,E$ and $F$ on the sides $BC,CA$ and $AB$ respectively are such that $BD+BF=CA$ and $CD+CE=AB$. The circumcircles of the triangles $BFD$ and $CDE$ intersect at $P \neq D$. Prove that $OP=OI$.

2017 District Olympiad, 2

Let $ ABC $ be a triangle in which $ O,I, $ are the circumcenter, respectively, incenter. The mediators of $ IA,IB,IC, $ form a triangle $ A_1B_1C_1. $ Show that $ \overrightarrow{OI}=\overrightarrow{OA_1} +\overrightarrow{OA_2} +\overrightarrow{OA_3} . $

2006 India IMO Training Camp, 2

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2004 Silk Road, 3

In-circle of $ABC$ with center $I$ touch $AB$ and $AC$ at $P$ and $Q$ respectively. $BI$ and $CI$ intersect $PQ$ at $K$ and $L$ respectively. Prove, that circumcircle of $ILK$ touch incircle of $ABC$ iff $|AB|+|AC|=3|BC|$.

2016 South East Mathematical Olympiad, 7

Tags: incenter , geometry
$I$ is incenter of $\triangle{ABC}$. The incircle touches $BC,CA,AB$ at $D,E,F$, respectively . Let $M,N,K=BI,CI,DI \cap EF$ respectively and $BN\cap CM=P,AK\cap BC=G$. Point $Q$ is intersection of the perpendicular line to $PG$ through $I$ and the perpendicular line to $PB$ through $P$. Prove that $BI$ bisect segment $PQ$.

2020 GQMO, 8

Let $ABC$ be an acute scalene triangle, with the feet of $A,B,C$ onto $BC,CA,AB$ being $D,E,F$ respectively. Let $W$ be a point inside $ABC$ whose reflections over $BC,CA,AB$ are $W_a,W_b,W_c$ respectively. Finally, let $N$ and $I$ be the circumcenter and the incenter of $W_aW_bW_c$ respectively. Prove that, if $N$ coincides with the nine-point center of $DEF$, the line $WI$ is parallel to the Euler line of $ABC$. [i]Proposed by Navneel Singhal, India and Massimiliano Foschi, Italy[/i]

2010 China Team Selection Test, 1

Let $\omega$ be a semicircle and $AB$ its diameter. $\omega_1$ and $\omega_2$ are two different circles, both tangent to $\omega$ and to $AB$, and $\omega_1$ is also tangent to $\omega_2$. Let $P,Q$ be the tangent points of $\omega_1$ and $\omega_2$ to $AB$ respectively, and $P$ is between $A$ and $Q$. Let $C$ be the tangent point of $\omega_1$ and $\omega$. Find $\tan\angle ACQ$.

2011 Mongolia Team Selection Test, 2

Given a triangle $ABC$, the internal and external bisectors of angle $A$ intersect $BC$ at points $D$ and $E$ respectively. Let $F$ be the point (different from $A$) where line $AC$ intersects the circle $w$ with diameter $DE$. Finally, draw the tangent at $A$ to the circumcircle of triangle $ABF$, and let it hit $w$ at $A$ and $G$. Prove that $AF=AG$.

2018 Serbia National Math Olympiad, 1

Let $\triangle ABC$ be a triangle with incenter $I$. Points $P$ and $Q$ are chosen on segmets $BI$ and $CI$ such that $2\angle PAQ=\angle BAC$. If $D$ is the touch point of incircle and side $BC$ prove that $\angle PDQ=90$.

1996 Vietnam National Olympiad, 2

Tags: geometry , incenter
The triangle ABC has BC=1 and $ \angle BAC \equal{} a$. Find the shortest distance between its incenter and its centroid. Denote this shortest distance by $ f(a)$. When a varies in the interval $ (\frac {\pi}{3},\pi)$, find the maximum value of $ f(a)$.

2018 Dutch IMO TST, 4

In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.

2020 Switzerland Team Selection Test, 8

Let $I$ be the incenter of a non-isosceles triangle $ABC$. The line $AI$ intersects the circumcircle of the triangle $ABC$ at $A$ and $D$. Let $M$ be the middle point of the arc $BAC$. The line through the point $I$ perpendicular to $AD$ intersects $BC$ at $F$. The line $MI$ intersects the circle $BIC$ at $N$. Prove that the line $FN$ is tangent to the circle $BIC$.

2005 All-Russian Olympiad Regional Round, 9.4

9.4, 10.3 Let $I$ be an incenter of $ABC$ ($AB<BC$), $M$ is a midpoint of $AC$, $N$ is a midpoint of circumcircle's arc $ABC$. Prove that $\angle IMA=\angle INB$. ([i]A. Badzyan[/i])

2011 China National Olympiad, 2

On the circumcircle of the acute triangle $ABC$, $D$ is the midpoint of $ \stackrel{\frown}{BC}$. Let $X$ be a point on $ \stackrel{\frown}{BD}$, $E$ the midpoint of $ \stackrel{\frown}{AX}$, and let $S$ lie on $ \stackrel{\frown}{AC}$. The lines $SD$ and $BC$ have intersection $R$, and the lines $SE$ and $AX$ have intersection $T$. If $RT \parallel DE$, prove that the incenter of the triangle $ABC$ is on the line $RT.$

2016 Czech-Polish-Slovak Junior Match, 5

Let $ABC$ be a triangle with $AB : AC : BC =5:5:6$. Denote by $M$ the midpoint of $BC$ and by $N$ the point on the segment $BC$ such that $BN = 5 \cdot CN$. Prove that the circumcenter of triangle $ABN$ is the midpoint of the segment connecting the incenters of triangles $ABC$ and $ABM$. Slovakia

1949 Moscow Mathematical Olympiad, 160

Prove that for any triangle the circumscribed circle divides the line segment connecting the center of its inscribed circle with the center of one of the exscribed circles in halves.

2018 Bulgaria EGMO TST, 1

The angle bisectors at $A$ and $C$ in a non-isosceles triangle $ABC$ with incenter $I$ intersect its circumcircle $k$ at $A_0$ and $C_0$, respectively. The line through $I$, parallel to $AC$, intersects $A_0C_0$ at $P$. Prove that $PB$ is tangent to $k$.

2005 AIME Problems, 15

Triangle $ABC$ has $BC=20$. The incircle of the triangle evenly trisects the median $AD$. If the area of the triangle is $m \sqrt{n}$ where $m$ and $n$ are integers and $n$ is not divisible by the square of a prime, find $m+n$.

1998 IMO, 5

Let $I$ be the incenter of triangle $ABC$. Let $K,L$ and $M$ be the points of tangency of the incircle of $ABC$ with $AB,BC$ and $CA$, respectively. The line $t$ passes through $B$ and is parallel to $KL$. The lines $MK$ and $ML$ intersect $t$ at the points $R$ and $S$. Prove that $\angle RIS$ is acute.