Found problems: 320
Kyiv City MO Juniors Round2 2010+ geometry, 2019.9.31
A circle $k$ of radius $r$ is inscribed in $\vartriangle ABC$, tangent to the circle $k$, which are parallel respectively to the sides $AB, BC$ and $CA$ intersect the other sides of $\vartriangle ABC$ at points $M, N; P, Q$ and $L, T$ ($P, T \in AB$, $L, N \in BC$ and $M, Q\in AC$). Denote by $r_1,r_2,r_3$ the radii of inscribed circles in triangles $MNC, PQA$ and $LTB$. Prove that $r_1+r_2+r_3=r$.
2020 BMT Fall, Tie 3
$\vartriangle ABC$ has $AB = 5$, $BC = 12$, and $AC = 13$. A circle is inscribed in $\vartriangle ABC$, and $MN$ tangent to the circle is drawn such that $M$ is on $\overline{AC}$, $N$ is on $\overline{BC}$, and $\overline{MN} \parallel \overline{AB}$. The area of $\vartriangle MNC$ is $m/n$ , where $m$ and $n $are relatively prime positive integers. Find $m + n$.
Mathley 2014-15, 6
Let the inscribed circle $(I)$ of the triangle $ABC$, touches $CA, AB$ at $E, F$. $P$ moves along $EF$, $PB$ cuts $CA$ at $M, MI$ cuts the line, through $C$ perpendicular to $AC$, at $N$. Prove that the line through $N$ is perpendicular to $PC$ crosses a fixed point as $P$ moves.
Tran Quang Hung, High School of Natural Sciences, Hanoi National University
1976 IMO Shortlist, 1
Let $ABC$ be a triangle with bisectors $AA_1,BB_1, CC_1$ ($A_1 \in BC$, etc.) and $M$ their common point. Consider the triangles $MB_1A, MC_1A,MC_1B,MA_1B,MA_1C,MB_1C$, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then $AB = BC = CA.$
Kyiv City MO 1984-93 - geometry, 1990.8.2
A line passes through the center $O$ of an equilateral triangle $ABC$ and intersects the side $BC$. At what angle wrt $BC$ should this line be drawn this line so that its segment inside the triangle has the smallest possible length?
2017 Oral Moscow Geometry Olympiad, 4
Prove that a circle constructed with the side $AB$ of a triangle $ABC$ as a diameter touches the inscribed circle of the triangle $ABC$ if and only if the side $AB$ is equal to the radius of the exircle on that side.
2017 Bulgaria EGMO TST, 2
Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$.
a) Prove that $M$, $T$, $K$ and $L$ are concyclic.
b) Determine the measure of $\angle BPC$.
2025 Bangladesh Mathematical Olympiad, P6
Let the incircle of triangle $ABC$ touch sides $BC, CA$ and $AB$ at the points $D, E$ and $F$ respectively and let $I$ be the center of that circle. Furthermore, let $P$ be the foot of the perpendicular from point $I$ to line $AD$ and let $M$ be the midpoint of $DE$. If $N$ is the intersection point of $PM$ and $AC$, prove that $DN \parallel EF$.
2012 Tournament of Towns, 5
Let $\ell$ be a tangent to the incircle of triangle $ABC$. Let $\ell_a,\ell_b$ and $\ell_c$ be the respective images of $\ell$ under reflection across the exterior bisector of $\angle A,\angle B$ and $\angle C$. Prove that the triangle formed by these lines is congruent to $ABC$.
2020 Hong Kong TST, 5
In $\Delta ABC$, let $D$ be a point on side $BC$. Suppose the incircle $\omega_1$ of $\Delta ABD$ touches sides $AB$ and $AD$ at $E,F$ respectively, and the incircle $\omega_2$ of $\Delta ACD$ touches sides $AD$ and $AC$ at $F,G$ respectively. Suppose the segment $EG$ intersects $\omega_1$ and $\omega_2$ again at $P$ and $Q$ respectively. Show that line $AD$, tangent of $\omega_1$ at $P$ and tangent of $\omega_2$ at $Q$ are concurrent.
2005 Sharygin Geometry Olympiad, 17
A circle is inscribed in the triangle $ ABC$ and it's center $I$ and the points of tangency $P, Q, R$ with the sides $BC$, $C A$ and $AB$ are marked, respectively. With a single ruler, build a point $K$ at which the circle passing through the vertices B and $C$ touches (internally) the inscribed circle.
Indonesia MO Shortlist - geometry, g3
Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.
2015 Oral Moscow Geometry Olympiad, 4
In trapezoid $ABCD$, the bisectors of angles $A$ and $D$ intersect at point $E$ lying on the side of $BC$. These bisectors divide the trapezoid into three triangles into which the circles are inscribed. One of these circles touches the base $AB$ at the point $K$, and two others touch the bisector $DE$ at points $M$ and $N$. Prove that $BK = MN$.
2023 Sharygin Geometry Olympiad, 22
Let $ABC$ be a scalene triangle, $M$ be the midpoint of $BC,P$ be the common point of $AM$ and the incircle of $ABC$ closest to $A$, and $Q$ be the common point of the ray $AM$ and the excircle farthest from $A$. The tangent to the incircle at $P$ meets $BC$ at point $X$, and the tangent to the excircle at $Q$ meets $BC$ at $Y$. Prove that $MX=MY$.
1951 Poland - Second Round, 1
In a right triangle $ ABC $, the altitude $ CD $ is drawn from the vertex of the right angle $ C $ and a circle is inscribed in each of the triangles $ ABC $, $ ACD $ and $ BCD $. Prove that the sum of the radii of these circles equals the height $ CD $.
2020 CHKMO, 3
Let $\Delta ABC$ be an isosceles triangle with $AB=AC$. The incircle $\Gamma$ of $\Delta ABC$ has centre $I$, and it is tangent to the sides $AB$ and $AC$ at $F$ and $E$ respectively. Let $\Omega$ be the circumcircle of $\Delta AFE$. The two external common tangents of $\Gamma$ and $\Omega$ intersect at a point $P$. If one of these external common tangents is parallel to $AC$, prove that $\angle PBI=90^{\circ}$.
2004 Olympic Revenge, 3
$ABC$ is a triangle and $\omega$ its incircle. Let $P,Q,R$ be the intersections with $\omega$ and the sides $BC,CA,AB$ respectively. $AP$ cuts $\omega$ in $P$ and $X$. $BX,CX$ cut $\omega$ in $M,N$ respectively. Show that $MR,NQ,AP$ are parallel or concurrent.
2012 Belarus Team Selection Test, 2
Let $\Gamma$ be the incircle of an non-isosceles triangle $ABC$, $I$ be it’s center. Let $A_1, B_1, C_1$ be the tangency points of $\Gamma$ with the sides $BC, AC, AB$, respectively. Let $A_2 = \Gamma \cap AA_1, M = C_1B_1 \cup AI$, $P$ and $Q$ be the other (different from $A_1, A_2$) intersection points of $A_1M, A_2M$ and $\Gamma$, respectively. Prove that $A, P, Q$ are collinear.
(A. Voidelevich)
2012 Harvard-MIT Mathematics Tournament, 8
Hexagon $ABCDEF$ has a circumscribed circle and an inscribed circle. If $AB = 9$, $BC = 6$, $CD = 2$, and $EF = 4$. Find $\{DE, FA\}$.
1980 Poland - Second Round, 6
Prove that if the point $ P $ runs through a circle inscribed in the triangle $ ABC $, then the value of the expression
$ a \cdot PA^2 + b \cdot PB^2 + c \cdot PC^2 $ is constant ($ a, b, c $ are the lengths of the sides opposite the vertices $ A, B, C $, respectively).
2011 Ukraine Team Selection Test, 6
The circle $ \omega $ inscribed in triangle $ABC$ touches its sides $AB, BC, CA$ at points $K, L, M$ respectively. In the arc $KL$ of the circle $ \omega $ that does not contain the point $M$, we select point $S$. Denote by $P, Q, R, T$ the intersection points of straight $AS$ and $KM, ML$ and $SC, LP$ and $KQ, AQ$ and $PC$ respectively. It turned out that the points $R, S$ and $M$ are collinear. Prove that the point $T$ also lies on the line $SM$.
2021 Adygea Teachers' Geometry Olympiad, 2
In triangle $ABC$, the incircle touches the side $AC$ at point $B_1$ and one excircle is touching the same side at point $B_2$. It is known that the segments $BB_1$ and $BB_2$ are equal. Is it true that $\vartriangle ABC$ is isosceles?
2017 Bosnia and Herzegovina Junior BMO TST, 3
Let $ABC$ be a triangle such that $\angle ABC = 90 ^{\circ}$. Let $I$ be an incenter of $ABC$ and let $F$, $D$ and $E$ be points where incircle touches sides $AB$, $BC$ and $AC$, respectively. If lines $CI$ and $EF$ intersect at point $M$ and if $DM$ and $AB$ intersect in $N$, prove that $AI=ND$
2015 India PRMO, 12
$12.$ In a rectangle $ABCD$ $AB=8$ and $BC=20.$ Let $P$ be a point on $AD$ such that $\angle{BPC}=90^o.$ If $r_1,r_2,r_3.$ are the radii of the incircles of triangles $APB,$ $BPC,$ and $CPD.$ what is the value of $r_1+r_2+r_3 ?$
Geometry Mathley 2011-12, 16.3
The incircle $(I)$ of a triangle $ABC$ touches $BC,CA,AB$ at $D,E, F$. Let $ID, IE, IF$ intersect $EF, FD,DE$ at $X,Y,Z$, respectively. The lines $\ell_a, \ell_b, \ell_c$ through $A,B,C$ respectively and are perpendicular to $YZ,ZX,XY$ .
Prove that $\ell_a, \ell_b, \ell_c$ are concurrent at a point that is on the line segment joining $I$ and the centroid of triangle $ABC$ .
Nguyễn Minh Hà