Found problems: 259
2003 Vietnam National Olympiad, 2
The circles $ C_{1}$ and $ C_{2}$ touch externally at $ M$ and the radius of $ C_{2}$ is larger than that of $ C_{1}$. $ A$ is any point on $ C_{2}$ which does not lie on the line joining the centers of the circles. $ B$ and $ C$ are points on $ C_{1}$ such that $ AB$ and $ AC$ are tangent to $ C_{1}$. The lines $ BM$, $ CM$ intersect $ C_{2}$ again at $ E$, $ F$ respectively. $ D$ is the intersection of the tangent at $ A$ and the line $ EF$. Show that the locus of $ D$ as $ A$ varies is a straight line.
2014 Middle European Mathematical Olympiad, 4
In Happy City there are $2014$ citizens called $A_1, A_2, \dots , A_{2014}$. Each of them is either [i]happy[/i] or [i]unhappy[/i] at any moment in time. The mood of any citizen $A$ changes (from being unhappy to being happy or vice versa) if and only if some other happy citizen smiles at $A$. On Monday morning there were $N$ happy citizens in the city.
The following happened on Monday during the day: the citizen $A_1$ smiled at citizen $A_2$, then $A_2$ smiled at $A_3$, etc., and, finally, $A_{2013}$ smiled at $A_{2014}$. Nobody smiled at anyone else apart from this. Exactly the same repeated on Tuesday, Wednesday and Thursday. There were exactly $2000$ happy citizens on Thursday evening.
Determine the largest possible value of $N$.
2000 Cono Sur Olympiad, 2
Consider the following transformation of the Cartesian plane: choose a lattice point and rotate the plane $90^\circ$ counterclockwise about that lattice point. Is it possible, through a sequence of such transformations, to take the triangle with vertices $(0,0)$, $(1,0)$ and $(0,1)$ to the triangle with vertices $(0,0)$, $(1,0)$ and $(1,1)$?
1991 Arnold's Trivium, 93
Decompose the space of functions defined on the vertices of a cube into invariant subspaces irreducible with respect to the group of a) its symmetries, b) its rotations.
2002 Miklós Schweitzer, 9
Let $M$ be a connected, compact $C^{\infty}$-differentiable manifold, and denote the vector space of smooth real functions on $M$ by $C^{\infty}(M)$. Let the subspace $V\le C^{\infty}(M)$ be invariant under $C^{\infty}$-diffeomorphisms of $M$, that is, let $f\circ h\in V$ for every $f\in V$ and for every $C^{\infty}$-diffeomorphism $h\colon M\rightarrow M$. Prove that if $V$ is different from the subspaces $\{ 0\}$ and $C^{\infty}(M)$ then $V$ only contains the constant functions.
2018 Tuymaada Olympiad, 6
The numbers $1, 2, 3, \dots, 1024$ are written on a blackboard. They are divided into pairs. Then each pair is wiped off the board and non-negative difference of its numbers is written on the board instead. $512$ numbers obtained in this way are divided into pairs and so on. One number remains on the blackboard after ten such operations. Determine all its possible values.
[i]Proposed by A. Golovanov[/i]
2010 Saint Petersburg Mathematical Olympiad, 7
$200 \times 200$ square is colored in chess order. In one move we can take every $2 \times 3$ rectangle and change color of all its cells. Can we make all cells of square in same color ?
2014 NIMO Problems, 3
The numbers $1,2,\dots,10$ are written on a board. Every minute, one can select three numbers $a$, $b$, $c$ on the board, erase them, and write $\sqrt{a^2+b^2+c^2}$ in their place. This process continues until no more numbers can be erased. What is the largest possible number that can remain on the board at this point?
[i]Proposed by Evan Chen[/i]
2015 Peru IMO TST, 5
We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ .
[i]Proposed by Abbas Mehrabian, Iran[/i]
2003 Alexandru Myller, 3
Let $ S $ be the first quadrant and $ T:S\longrightarrow S $ be a transformation that takes the reciprocal of the coordinates of the points that belong to its domain. Define an [i]S-line[/i] to be the intersection of a line with $ S. $
[b]a)[/b] Show that the fixed points of $ T $ lie on any fixed S-line of $ T. $
[b]b)[/b] Find all fixed S-lines of $ T. $
[i]Gabriel Popa[/i]
2012 Regional Olympiad of Mexico Center Zone, 6
A board of $2n$ x $2n$ is colored chess style, a movement is the changing of colors of a $2$ x $2$ square. For what integers $n$ is possible to complete the board with one color using a finite number of movements?
1986 IMO, 3
To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.
2009 Romania National Olympiad, 4
Find all functions $ f:[0,1]\longrightarrow [0,1] $ that are bijective, continuous and have the property that, for any continuous function $ g:[0,1]\longrightarrow\mathbb{R} , $ the following equality holds.
$$ \int_0^1 g\left( f(x) \right) dx =\int_0^1 g(x) dx $$
1993 Putnam, B6
Let $S$ be a set of three, not necessarily distinct, positive integers. Show that one can transform $S$ into a set containing $0$ by a finite number of applications of the following rule: Select two of the integers $x$ and $y$, where $x\leq y$ and replace them with $2x$ and $y-x.$
1996 IMO Shortlist, 5
Let $ p,q,n$ be three positive integers with $ p \plus{} q < n$. Let $ (x_{0},x_{1},\cdots ,x_{n})$ be an $ (n \plus{} 1)$-tuple of integers satisfying the following conditions :
(a) $ x_{0} \equal{} x_{n} \equal{} 0$, and
(b) For each $ i$ with $ 1\leq i\leq n$, either $ x_{i} \minus{} x_{i \minus{} 1} \equal{} p$ or $ x_{i} \minus{} x_{i \minus{} 1} \equal{} \minus{} q$.
Show that there exist indices $ i < j$ with $ (i,j)\neq (0,n)$, such that $ x_{i} \equal{} x_{j}$.
1999 BAMO, 4
Finitely many cards are placed in two stacks, with more cards in the left stack than the right. Each card has one or more distinct names written on it, although different cards may share some names. For each name, we define a “shuffle” by moving every card that has this name written on it to the opposite stack. Prove that it is always possible to end up with more cards in the right stack by picking several distinct names, and doing in turn the shuffle corresponding to each name.
2004 Italy TST, 1
At the vertices $A, B, C, D, E, F, G, H$ of a cube, $2001, 2002, 2003, 2004, 2005, 2008, 2007$ and $2006$ stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at $A, B, \ldots , H$ can be obtained?
$(\text{a})\quad 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2005;$
$(\text{b})\quad 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007;$
$(\text{c})\quad 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.$
2005 Bundeswettbewerb Mathematik, 4
Prove that each finite set of integers can be arranged without intersection.
1989 IMO Longlists, 64
A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.
1998 Belarus Team Selection Test, 3
Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 \equal{} (1),$ and if $ R_{n - 1} \equal{} (x_1, \ldots, x_s),$ then
\[ R_n \equal{} (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\]
For example, $ R_2 \equal{} (1, 2),$ $ R_3 \equal{} (1, 1, 2, 3),$ $ R_4 \equal{} (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.
PEN I Problems, 2
Prove that for any positive integer $n$, \[\left\lfloor \frac{n}{3}\right\rfloor+\left\lfloor \frac{n+2}{6}\right\rfloor+\left\lfloor \frac{n+4}{6}\right\rfloor = \left\lfloor \frac{n}{2}\right\rfloor+\left\lfloor \frac{n+3}{6}\right\rfloor .\]
2010 Contests, 2
In each cell of an $n\times n$ board is a lightbulb. Initially, all of the lights are off. Each move consists of changing the state of all of the lights in a row or of all of the lights in a column (off lights are turned on and on lights are turned off).
Show that if after a certain number of moves, at least one light is on, then at this moment at least $n$ lights are on.
1969 IMO Shortlist, 49
$(NET 4)$ A boy has a set of trains and pieces of railroad track. Each piece is a quarter of circle, and by concatenating these pieces, the boy obtained a closed railway. The railway does not intersect itself. In passing through this railway, the train sometimes goes in the clockwise direction, and sometimes in the opposite direction. Prove that the train passes an even number of times through the pieces in the clockwise direction and an even number of times in the counterclockwise direction. Also, prove that the number of pieces is divisible by $4.$
2014 Brazil Team Selection Test, 3
A crazy physicist discovered a new kind of particle wich he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in the lab by creating a copy $I'$ of each imon $I$. During this procedure, the two copies $I'$ and $J'$ become entangled if and only if the original imons $I$ and $J$ are entangled, and each copy $I'$ becomes entangled with its original imon $I$; no other entanglements occur or disappear at this moment.
Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.
Russian TST 2015, P1
We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ .
[i]Proposed by Abbas Mehrabian, Iran[/i]