Found problems: 288
2016 Puerto Rico Team Selection Test, 5
$ABCD$ is a quadrilateral, $E, F, G, H$ are the midpoints of $AB$, $BC$, $CD$, $DA$ respectively. Find the point $P$ such that area $(PHAE) =$ area $(PEBF) =$ area $(PFCG) =$ area $(PGDH).$
2014 Bulgaria National Olympiad, 1
Let $k$ be a given circle and $A$ is a fixed point outside $k$. $BC$ is a diameter of $k$. Find the locus of the orthocentre of $\triangle ABC$ when $BC$ varies.
[i]Proposed by T. Vitanov, E. Kolev[/i]
1978 IMO Longlists, 46
We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.
1955 Moscow Mathematical Olympiad, 293
Consider a quadrilateral $ABCD$ and points $K, L, M, N$ on sides $AB, BC, CD$ and $AD$, respectively, such that $KB = BL = a, MD = DN = b$ and $KL \nparallel MN$. Find the set of all the intersection points of $KL$ with $MN$ as $a$ and $b$ vary.
1965 IMO Shortlist, 5
Consider $\triangle OAB$ with acute angle $AOB$. Thorugh a point $M \neq O$ perpendiculars are drawn to $OA$ and $OB$, the feet of which are $P$ and $Q$ respectively. The point of intersection of the altitudes of $\triangle OPQ$ is $H$. What is the locus of $H$ if $M$ is permitted to range over
a) the side $AB$;
b) the interior of $\triangle OAB$.
1985 Czech And Slovak Olympiad IIIA, 4
Two straight lines $p, q$ are given in the plane and on the straight line $q$ there is a point $F$, $F \not\in p$. Determine the set of all points $X$ that can be obtained by this construction: In the plane we choose a point $S$ that lies neither on $p$ nor on $q$, and we construct a circle $k$ with center $S$ that is tangent to the line $p$. On the circle $k$ we choose a point $T$ such that so that $ST \parallel q$. If the line $FT$ intersects the line $p$ at the point $U$, $X$ is the intersection of the lines $SU$ and $q$
1966 IMO Longlists, 17
Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios.
[b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram.
[b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ?
(Consecutive vertices of the parallelograms are labelled in alphabetical order.
2019 Sharygin Geometry Olympiad, 7
Let $P$ be an arbitrary point on side $BC$ of triangle $ABC$. Let $K$ be the incenter of triangle $PAB$. Let the incircle of triangle $PAC$ touch $BC$ at $F$. Point $G$ on $CK$ is such that $FG // PK$. Find the locus of $G$.
1967 IMO Longlists, 9
Circle $k$ and its diameter $AB$ are given. Find the locus of the centers of circles inscribed in the triangles having one vertex on $AB$ and two other vertices on $k.$
Champions Tournament Seniors - geometry, 2007.3
Given a triangle $ABC$. Point $M$ moves along the side $BA$ and point $N$ moves along the side $AC$ beyond point $C$ such that $BM=CN$. Find the geometric locus of the centers of the circles circumscribed around the triangle $AMN$.
2008 Switzerland - Final Round, 5
Let $ABCD$ be a square with side length $1$.
Find the locus of all points $P$ with the property $AP\cdot CP + BP\cdot DP = 1$.
1955 Moscow Mathematical Olympiad, 289
Consider an equilateral triangle $\vartriangle ABC$ and points $D$ and $E$ on the sides $AB$ and $BC$csuch that $AE = CD$. Find the locus of intersection points of $AE$ with $CD$ as points $D$ and $E$ vary.
1980 Poland - Second Round, 3
There is a sphere $ K $ in space and points $ A, B $ outside the sphere such that the segment $ AB $ intersects the interior of the sphere. Prove that the set of points $ P $ for which the segments $ AP $ and $ BP $ are tangent to the sphere $ K $ is contained in a certain plane.
1961 IMO Shortlist, 6
Consider a plane $\epsilon$ and three non-collinear points $A,B,C$ on the same side of $\epsilon$; suppose the plane determined by these three points is not parallel to $\epsilon$. In plane $\epsilon$ take three arbitrary points $A',B',C'$. Let $L,M,N$ be the midpoints of segments $AA', BB', CC'$; Let $G$ be the centroid of the triangle $LMN$. (We will not consider positions of the points $A', B', C'$ such that the points $L,M,N$ do not form a triangle.) What is the locus of point $G$ as $A', B', C'$ range independently over the plane $\epsilon$?
1992 IMO Longlists, 17
In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.
1963 Czech and Slovak Olympiad III A, 3
A line $MN$ is given in the plane. Consider circles $k_1$, $k_2$ tangent to the line at points $M$, $N$, respectively, while touching each other externally. Let $X$ be the midpoint of the segment $PQ$, where $P$, $Q$ are in this order tangent points of the second common external tangent of the circles $k_1$, $k_2$. Find the locus of the points $X$ for all pairs of circles of the specified properties.
2020 Tournament Of Towns, 5
Given are two circles which intersect at points $P$ and $Q$. Consider an arbitrary line $\ell$ through $Q$, let the second points of intersection of this line with the circles be $A$ and $B$ respectively. Let $C$ be the point of intersection of the tangents to the circles in those points. Let $D$ be the intersection of the line $AB$ and the bisector of the angle $CPQ$. Prove that all possible $D$ for any choice of $\ell$ lie on a single circle.
Alexey Zaslavsky
2005 Sharygin Geometry Olympiad, 9.3
Given a circle and points $A, B$ on it. Draw the set of midpoints of the segments, one of the ends of which lies on one of the arcs $AB$, and the other on the second.
VII Soros Olympiad 2000 - 01, 10.5
An acute-angled triangle $ABC$ is given. Points $A_1, B_1$ and $C_1$ are taken on its sides $BC, CA$ and $AB$, respectively, such that
$\angle B_1A_1C_1 + 2 \angle BAC = 180^o$,
$\angle A_1C_1B_1 + 2 \angle ACB = 180^o$,
$\angle C_1B_1A_1 + 2 \angle CBA = 180^o$.
Find the locus of the centers of the circles inscribed in triangles $A_1B_1C_1$ (all kinds of such triangles are considered).
2016 Sharygin Geometry Olympiad, 3
Assume that the two triangles $ABC$ and $A'B'C'$ have the common incircle and the common circumcircle. Let a point $P$ lie inside both the triangles. Prove that the sum of the distances from $P$ to the sidelines of triangle $ABC$ is equal to the sum of distances from $P$ to the sidelines of triangle $A'B'C'$.
1996 Rioplatense Mathematical Olympiad, Level 3, 4
Let $S$ be the circle of center $O$ and radius $R$, and let $A, A'$ be two diametrically opposite points in $S$. Let $P$ be the midpoint of $OA'$ and $\ell$ a line passing through $P$, different from $AA '$ and from the perpendicular on $AA '$. Let $B$ and $C$ be the intersection points of $\ell$ with $S$ and let $M$ be the midpoint of $BC$.
a) Let $H$ be the foot of the altitude from $A$ in the triangle $ABC$. Let $D$ be the intersection point of the line $A'M$ with $AH$. Determine the locus of point $D$ while $\ell$ varies .
b) Line $AM$ intersects $OD$ at $I$. Prove that $2 OI = ID$ and determine the locus of point $I$ while $\ell$ varies .
1963 IMO, 2
Point $A$ and segment $BC$ are given. Determine the locus of points in space which are vertices of right angles with one side passing through $A$, and the other side intersecting segment $BC$.
1941 Moscow Mathematical Olympiad, 074
A point $P$ lies outside a circle. Consider all possible lines drawn through $P$ so that they intersect the circle. Find the locus of the midpoints of the chords — segments the circle intercepts on these lines.
2013 IFYM, Sozopol, 2
The point $P$, from the plane in which $\Delta ABC$ lies, is such that if $A_1,B_1$, and $C_1$ are the orthogonal projections of $P$ on the respective altitudes of $ABC$, then $AA_1=BB_1=CC_1=t$. Determine the locus of $P$ and length of $t$.
2010 Cuba MO, 8
Let $ABCDE$ be a convex pentagon that has $AB < BC$, $AE <ED$ and $AB + CD + EA = BC + DE$. Variable points $F,G$ and $H$ are taken that move on the segments $BC$, $CD$ and $OF$ respectively . $B'$ is defined as the projection of $B$ on $AF$, $C'$ as the projection of $C$ on $FG$, $D'$ as the projection of $D$ on $GH$ and $E'$ as the projection of $E$ onto $HA$. Prove that there is at least one quadrilateral $B'C'D'E'$ when $F,G$ and $H$ move on their sides, which is a parallelogram.