This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 316

2021 Saudi Arabia Training Tests, 22

Let $ABC$ be a non-isosceles triangle with altitudes $AD$, $BE$, $CF$ with orthocenter $H$. Suppose that $DF \cap HB = M$, $DE \cap HC = N$ and $T$ is the circumcenter of triangle $HBC$. Prove that $AT\perp MN$.

2015 Estonia Team Selection Test, 9

The orthocenter of an acute triangle $ABC$ is $H$. Let $K$ and $P$ be the midpoints of lines $BC$ and $AH$, respectively. The angle bisector drawn from the vertex $A$ of the triangle $ABC$ intersects with line $KP$ at $D$. Prove that $HD\perp AD$.

2019 IFYM, Sozopol, 3

The perpendicular bisector of $AB$ of an acute $\Delta ABC$ intersects $BC$ and the continuation of $AC$ in points $P$ and $Q$ respectively. $M$ and $N$ are the middle points of side $AB$ and segment $PQ$ respectively. If the lines $AB$ and $CN$ intersect in point $D$, prove that $\Delta ABC$ and $\Delta DCM$ have a common orthocenter.

2012 Oral Moscow Geometry Olympiad, 6

Restore the triangle with a compass and a ruler given the intersection point of altitudes and the feet of the median and angle bisectors drawn to one side. (No research required.)

Mexican Quarantine Mathematical Olympiad, #4

Let $ABC$ be an acute triangle with orthocenter $H$. Let $A_1$, $B_1$ and $C_1$ be the feet of the altitudes of triangle $ABC$ opposite to vertices $A$, $B$, and $C$ respectively. Let $B_2$ and $C_2$ be the midpoints of $BB_1$ and $CC_1$, respectively. Let $O$ be the intersection of lines $BC_2$ and $CB_2$. Prove that $O$ is the circumcenter of triangle $ABC$ if and only if $H$ is the midpoint of $AA_1$. [i]Proposed by Dorlir Ahmeti[/i]

2023 Czech-Polish-Slovak Junior Match, 3

Given is an acute triangle $ABC$. Point $P$ lies inside this triangle and lies on the bisector of angle $\angle BAC$. Suppose that the point of intersection of the altitudes $H$ of triangle $ABP$ lies inside triangle $ABC$. Let $Q$ be the intersection of the line $AP$ and the line perpendicular to $AC$ passing through $H$. Prove that $Q$ is the point symmetrical to $P$ wrt the line $BH$.

2024 Philippine Math Olympiad, P7

Let $ABC$ be an acute triangle with orthocenter $H$, circumcenter $O$, and circumcircle $\Omega$. Points $E$ and $F$ are the feet of the altitudes from $B$ to $AC$, and from $C$ to $AB$, respectively. Let line $AH$ intersect $\Omega$ again at $D$. The circumcircle of $DEF$ intersects $\Omega$ again at $X$, and $AX$ intersects $BC$ at $I$. The circumcircle of $IEF$ intersects $BC$ again at $G$. If $M$ is the midpoint of $BC$, prove that lines $MX$ and $OG$ intersect on $\Omega$.

2018 Chile National Olympiad, 6

Consider an acute triangle $ABC$ and its altitudes from $A$ ,$B$ that intersect the respective sides at $D ,E$. Let us call the point of intersection of the altitudes $H$. Construct the circle with center $H$ and radius $HE$. From $C$ draw a tangent line to the circle at point $P$. With center $B$ and radius $BE$ draw another circle and from $C$ another tangent line is drawn to this circle in the point $Q$. Prove that the points $D, P$, and $Q$ are collinear.

2020 Tournament Of Towns, 3

Let $ABCD$ be a rhombus, let $APQC$ be a parallelogram such that the point $B$ lies inside it and the side $AP$ is equal to the side of the rhombus. Prove that $B$ is the orthocenter of the triangle $DPQ$. Egor Bakaev

2008 Oral Moscow Geometry Olympiad, 5

Reconstruct an acute-angled triangle given the orthocenter and midpoints of two sides. (A. Zaslavsky)

Geometry Mathley 2011-12, 16.2

Let $ABCD$ be a quadrilateral and $P$ a point in the plane of the quadrilateral. Let $M,N$ be on the sides $AC,BD$ respectively such that $PM \parallel BC, PN \parallel AD$. $AC$ meets $BD$ at $E$. Prove that the orthocenter of triangles $EBC, EAD, EMN$ are collinear if and only if $P$ is on the line $AB$. Đỗ Thanh Sơn PS. Instead of the word [b]collinear[/b], it was written [b]concurrent[/b], probably a typo.

2021 Mexico National Olympiad, 4

Let $ABC$ be an acutangle scalene triangle with $\angle BAC = 60^{\circ}$ and orthocenter $H$. Let $\omega_b$ be the circumference passing through $H$ and tangent to $AB$ at $B$, and $\omega_c$ the circumference passing through $H$ and tangent to $AC$ at $C$. [list] [*] Prove that $\omega_b$ and $\omega_c$ only have $H$ as common point. [*] Prove that the line passing through $H$ and the circumcenter $O$ of triangle $ABC$ is a common tangent to $\omega_b$ and $\omega_c$. [/list] [i]Note:[/i] The orthocenter of a triangle is the intersection point of the three altitudes, whereas the circumcenter of a triangle is the center of the circumference passing through it's three vertices.

2015 Sharygin Geometry Olympiad, P7

The altitudes $AA_1$ and $CC_1$ of a triangle $ABC$ meet at point $H$. Point $H_A$ is symmetric to $H$ about $A$. Line $H_AC_1$ meets $BC$ at point $C' $, point $A' $ is defined similarly. Prove that $A' C' // AC$.

2016 Bulgaria JBMO TST, 2

The vertices of the pentagon $ABCDE$ are on a circle, and the points $H_1, H_2, H_3,H_4$ are the orthocenters of the triangles $ABC, ABE, ACD, ADE$ respectively . Prove that the quadrilateral determined by the four orthocenters is square if and only if $BE \parallel CD$ and the distance between them is $\frac{BE + CD}{2}$.

2015 Saudi Arabia GMO TST, 3

Let $BD$ and $CE$ be altitudes of an arbitrary scalene triangle $ABC$ with orthocenter $H$ and circumcenter $O$. Let $M$ and $N$ be the midpoints of sides $AB$, respectively $AC$, and $P$ the intersection point of lines $MN$ and $DE$. Prove that lines $AP$ and $OH$ are perpendicular. Liana Topan

2016 IMO Shortlist, G8

Let $A_1, B_1$ and $C_1$ be points on sides $BC$, $CA$ and $AB$ of an acute triangle $ABC$ respectively, such that $AA_1$, $BB_1$ and $CC_1$ are the internal angle bisectors of triangle $ABC$. Let $I$ be the incentre of triangle $ABC$, and $H$ be the orthocentre of triangle $A_1B_1C_1$. Show that $$AH + BH + CH \geq AI + BI + CI.$$

2016 Federal Competition For Advanced Students, P1, 2

We are given an acute triangle $ABC$ with $AB > AC$ and orthocenter $H$. The point $E$ lies symmetric to $C$ with respect to the altitude $AH$. Let $F$ be the intersection of the lines $EH$ and $AC$. Prove that the circumcenter of the triangle $AEF$ lies on the line $AB$. (Karl Czakler)

2007 Junior Tuymaada Olympiad, 4

An acute-angle non-isosceles triangle $ ABC $ is given. The point $ H $ is its orthocenter, the points $ O $ and $ I $ are the centers of its circumscribed and inscribed circles, respectively. The circumcircle of the triangle $ OIH $ passes through the vertex $ A $. Prove that one of the angles of the triangle is $ 60^\circ $.

1996 Estonia Team Selection Test, 2

Let $H$ be the orthocenter of an obtuse triangle $ABC$ and $A_1B_1C_1$ arbitrary points on the sides $BC,AC,AB$ respectively.Prove that the tangents drawn from $H$ to the circles with diametrs $AA_1,BB_1,CC_1$ are equal.

2007 Sharygin Geometry Olympiad, 18

Determine the locus of vertices of triangles which have prescribed orthocenter and center of circumcircle.

2016 Switzerland - Final Round, 8

Let $ABC$ be an acute-angled triangle with height intersection $H$. Let $G$ be the intersection of parallel of $AB$ through $H$ with the parallel of $AH$ through $B$. Let $I$ be the point on the line $GH$, so that $AC$ bisects segment $HI$. Let $J$ be the second intersection of $AC$ and the circumcircle of the triangle $CGI$. Show that $IJ = AH$

2018-IMOC, G5

Suppose $I,O,H$ are incenter, circumcenter, orthocenter of $\vartriangle ABC$ respectively. Let $D = AI \cap BC$,$E = BI \cap CA$, $F = CI \cap AB$ and $X$ be the orthocenter of $\vartriangle DEF$. Prove that $IX \parallel OH$.

Kyiv City MO 1984-93 - geometry, 1991.10.2

In an acute-angled triangle $ABC$ on the sides $AB$, $BC$, $AC$, the points $C_1$, $A_1$, and $B_1$ are marked such that the segments $AA_1$, $BB_1$, $CC_1$ intersect at some point $O$ and the angles $AA_1C$, $BB_1A$, $CC_1B$ are equal. Prove that $AA_1$, $BB_1$, and $CC_1$ are the altitudes of the triangle.

2021 Iran RMM TST, 1

Suppose that two circles $\alpha, \beta$ with centers $P,Q$, respectively , intersect orthogonally at $A$,$B$. Let $CD$ be a diameter of $\beta$ that is exterior to $\alpha$. Let $E,F$ be points on $\alpha$ such that $CE,DF$ are tangent to $\alpha$ , with $C,E$ on one side of $PQ$ and $D,F$ on the other side of $PQ$. Let $S$ be the intersection of $CF,AQ$ and $T$ be the intersection of $DE,QB$. Prove that $ST$ is parallel to $CD$ and is tangent to $\alpha$

2023 Bangladesh Mathematical Olympiad, P4

Let $ABCD$ be an isosceles trapezium inscribed in circle $\omega$, such that $AB||CD$. Let $P$ be a point on the circle $\omega$. Let $H_1$ and $H_2$ be the orthocenters of triangles $PAD$ and $PBC$ respectively. Prove that the length of $H_1H_2$ remains constant, when $P$ varies on the circle.