This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 253

Today's calculation of integrals, 862

Draw a tangent with positive slope to a parabola $y=x^2+1$. Find the $x$-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is $\frac{11}{3}.$

Today's calculation of integrals, 874

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

1987 Traian Lălescu, 1.1

Tags: conic , parabola , geometry
Consider the parabola $ P:x-y^2-(p+3)y-p=0,p\in\mathbb{R}^*. $ Show that $ P $ intersects the coordonate axis at three points, and that the circle formed by these three points passes through a fixed point.

1999 Denmark MO - Mohr Contest, 1

In a coordinate system, a circle with radius $7$ and center is on the y-axis placed inside the parabola with equation $y = x^2$ , so that it just touches the parabola in two points. Determine the coordinate set for the center of the circle.

2001 AMC 12/AHSME, 13

The parabola with equation $ y \equal{} ax^2 \plus{} bx \plus{} c$ and vertex $ (h,k)$ is reflected about the line $ y \equal{} k$. This results in the parabola with equation $ y \equal{} dx^2 \plus{} ex \plus{} f$. Which of the following equals $ a \plus{} b \plus{} c \plus{} d \plus{} e \plus{} f$? $ \textbf{(A)} \ 2b \qquad \textbf{(B)} \ 2c \qquad \textbf{(C)} \ 2a \plus{} 2b \qquad \textbf{(D)} \ 2h \qquad \textbf{(E)} \ 2k$

2012 Today's Calculation Of Integral, 790

Define a parabola $C$ by $y=x^2+1$ on the coordinate plane. Let $s,\ t$ be real numbers with $t<0$. Denote by $l_1,\ l_2$ the tangent lines drawn from the point $(s,\ t)$ to the parabola $C$. (1) Find the equations of the tangents $l_1,\ l_2$. (2) Let $a$ be positive real number. Find the pairs of $(s,\ t)$ such that the area of the region enclosed by $C,\ l_1,\ l_2$ is $a$.

2007 Tournament Of Towns, 1

$A,B,C$ and $D$ are points on the parabola $y = x^2$ such that $AB$ and $CD$ intersect on the $y$-axis. Determine the $x$-coordinate of $D$ in terms of the $x$-coordinates of $A,B$ and $C$, which are $a, b$ and $c$ respectively.

Kvant 2025, M2837

On the graphic of the function $y=x^2$ were selected $1000$ pairwise distinct points, abscissas of which are integer numbers from the segment $[0; 100000]$. Prove that it is possible to choose six different selected points $A$, $B$, $C$, $A'$, $B'$, $C'$ such that areas of triangles $ABC$ and $A'B'C'$ are equals. [i]A. Tereshin[/i]

2007 Today's Calculation Of Integral, 177

On $xy$plane the parabola $K: \ y=\frac{1}{d}x^{2}\ (d: \ positive\ constant\ number)$ intersects with the line $y=x$ at the point $P$ that is different from the origin. Assumed that the circle $C$ is touched to $K$ at $P$ and $y$ axis at the point $Q.$ Let $S_{1}$ be the area of the region surrounded by the line passing through two points $P,\ Q$ and $K,$ or $S_{2}$ be the area of the region surrounded by the line which is passing through $P$ and parallel to $x$ axis and $K.$ Find the value of $\frac{S_{1}}{S_{2}}.$

1981 All Soviet Union Mathematical Olympiad, 308

Given real $a$. Find the least possible area of the rectangle with the sides parallel to the coordinate axes and containing the figure determined by the system of inequalities $$y \le -x^2 \,\,\, and \,\,\, y \ge x^2 - 2x + a$$

2011 Romanian Master of Mathematics, 3

A triangle $ABC$ is inscribed in a circle $\omega$. A variable line $\ell$ chosen parallel to $BC$ meets segments $AB$, $AC$ at points $D$, $E$ respectively, and meets $\omega$ at points $K$, $L$ (where $D$ lies between $K$ and $E$). Circle $\gamma_1$ is tangent to the segments $KD$ and $BD$ and also tangent to $\omega$, while circle $\gamma_2$ is tangent to the segments $LE$ and $CE$ and also tangent to $\omega$. Determine the locus, as $\ell$ varies, of the meeting point of the common inner tangents to $\gamma_1$ and $\gamma_2$. [i](Russia) Vasily Mokin and Fedor Ivlev[/i]

2006 AMC 10, 8

A parabola with equation $ y \equal{} x^2 \plus{} bx \plus{} c$ passes through the points $ (2,3)$ and $ (4,3)$. What is $ c$? $ \textbf{(A) } 2 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 11$

2024 Assara - South Russian Girl's MO, 4

A parabola $p$ is drawn on the coordinate plane — the graph of the equation $y =-x^2$, and a point $A$ is marked that does not lie on the parabola $p$. All possible parabolas $q$ of the form $y = x^2+ax+b$ are drawn through point $A$, intersecting $p$ at two points $X$ and $Y$ . Prove that all possible $XY$ lines pass through a fixed point in the plane. [i]P.A.Kozhevnikov[/i]

2020-2021 Winter SDPC, #6

Tags: conic , parabola , geometry
Let $ABC$ be an acute, scalene triangle, and let $P$ be an arbitrary point in its interior. Let $\mathcal{P}_A$ be the parabola with focus $P$ and directrix $BC$, and define $\mathcal{P}_B$ and $\mathcal{P}_C$ similarly. (a) Show that if $Q$ is an intersection point of $\mathcal{P}_B$ and $\mathcal{P}_C$, then $P$ and $Q$ are on the same side of $AB$, and $P$ and $Q$ are on the same side of $AC$. (b) You are given that $\mathcal{P}_B$ and $\mathcal{P}_C$ intersect at exactly two points. Let $\ell_A$ be the line between these points, and define $\ell_B$ and $\ell_C$ similarly. Show that $\ell_A$, $\ell_B$, and $\ell_C$ concur. [i]Note: A parabola with focus point $X$ and directrix line $\ell$ is the set of all points $Z$ that are the same distance from $X$ and $\ell$.[/i]

1991 AMC 12/AHSME, 18

If $S$ is the set of points $z$ in the complex plane such that $(3+4i)z$ is a real number, then $S$ is a $ \textbf{(A)}\text{ right triangle}\qquad\textbf{(B)}\text{ circle}\qquad\textbf{(C)}\text{ hyperbola}\qquad\textbf{(D)}\text{ line}\qquad\textbf{(E)}\text{ parabola} $

2007 Harvard-MIT Mathematics Tournament, 4

Find the real number $\alpha$ such that the curve $f(x)=e^x$ is tangent to the curve $g(x)=\alpha x^2$.

Kyiv City MO 1984-93 - geometry, 1990.10.5

A circle centered at a point $(0, 1)$ on the coordinate plane intersects the parabola $y = x^2$ at four points: $A, B, C, D.$ Find the largest possible value of the area of ​​the quadrilateral $ABCD$.

1997 Spain Mathematical Olympiad, 3

For each parabola $y = x^2+ px+q$ intersecting the coordinate axes in three distinct points, consider the circle passing through these points. Prove that all these circles pass through a single point, and find this point.

2010 Purple Comet Problems, 26

In the coordinate plane a parabola passes through the points $(7,6)$, $(7,12)$, $(18,19)$, and $(18,48)$. The axis of symmetry of the parabola is a line with slope $\tfrac{r}{s}$ where r and s are relatively prime positive integers. Find $r + s$.

1990 Bulgaria National Olympiad, Problem 2

Tags: parabola , conic
Let be given a real number $\alpha\ne0$. Show that there is a unique point $P$ in the coordinate plane, such that for every line through $P$ which intersects the parabola $y=\alpha x^2$ in two distinct points $A$ and $B$, segments $OA$ and $OB$ are perpendicular (where $O$ is the origin).

2008 AMC 12/AHSME, 17

Let $ A$, $ B$, and $ C$ be three distinct points on the graph of $ y\equal{}x^2$ such that line $ AB$ is parallel to the $ x$-axis and $ \triangle{ABC}$ is a right triangle with area $ 2008$. What is the sum of the digits of the $ y$-coordinate of $ C$? $ \textbf{(A)}\ 16 \qquad \textbf{(B)}\ 17 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 19 \qquad \textbf{(E)}\ 20$

2008 Harvard-MIT Mathematics Tournament, 9

Let $ S$ be the set of points $ (a,b)$ with $ 0\le a,b\le1$ such that the equation \[x^4 \plus{} ax^3 \minus{} bx^2 \plus{} ax \plus{} 1 \equal{} 0\] has at least one real root. Determine the area of the graph of $ S$.

2009 USA Team Selection Test, 2

Let $ ABC$ be an acute triangle. Point $ D$ lies on side $ BC$. Let $ O_B, O_C$ be the circumcenters of triangles $ ABD$ and $ ACD$, respectively. Suppose that the points $ B, C, O_B, O_C$ lies on a circle centered at $ X$. Let $ H$ be the orthocenter of triangle $ ABC$. Prove that $ \angle{DAX} \equal{} \angle{DAH}$. [i]Zuming Feng.[/i]

2014 HMNT, 6

Let $P_1$, $P_2$, $P_3$ be pairwise distinct parabolas in the plane. Find the maximum possible number of intersections between two or more of the $P_i$. In other words, find the maximum number of points that can lie on two or more of the parabolas $P_1$, $P_2$, $P_3$ .

2010 Tournament Of Towns, 2

Let $f(x)$ be a function such that every straight line has the same number of intersection points with the graph $y = f(x)$ and with the graph $y = x^2$. Prove that $f(x) = x^2.$