This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

1972 Vietnam National Olympiad, 3

$ABC$ is a triangle. $U$ is a point on the line $BC$. $I$ is the midpoint of $BC$. The line through $C$ parallel to $AI$ meets the line $AU$ at $E$. The line through $E$ parallel to $BC$ meets the line $AB$ at $F$. The line through $E$ parallel to $AB$ meets the line $BC$ at $H$. The line through $H$ parallel to $AU$ meets the line $AB$ at $K$. The lines $HK$ and $FG$ meet at $T. V$ is the point on the line $AU$ such that $A$ is the midpoint of $UV$. Show that $V, T$ and $I$ are collinear.

2000 Argentina National Olympiad, 2

Given a triangle $ABC$ with side $AB$ greater than $BC$, let $M$ be the midpoint of $AC$ and $L$ be the point at which the bisector of angle $\angle B$ intersects side $AC$. The line parallel to $AB$, which intersects the bisector $BL$ at $D$, is drawn by $M$, and the line parallel to the side $BC$ that intersects the median $BM$ at $E$ is drawn by $L$. Show that $ED$ is perpendicular to $BL$.

2009 Sharygin Geometry Olympiad, 6

Let $M, I$ be the centroid and the incenter of triangle $ABC, A_1$ and $B_1$ be the touching points of the incircle with sides $BC$ and $AC, G$ be the common point of lines $AA_1$ and $BB_1$. Prove that angle $\angle CGI$ is right if and only if $GM // AB$. (A.Zaslavsky)

2022 Czech-Polish-Slovak Junior Match, 3

The points $D, E, F$ lie respectively on the sides $BC$, $CA$, $AB$ of the triangle ABC such that $F B = BD$, $DC = CE$, and the lines $EF$ and $BC$ are parallel. Tangent to the circumscribed circle of triangle $DEF$ at point $F$ intersects line $AD$ at point $P$. Perpendicular bisector of segment $EF$ intersects the segment $AC$ at $Q$. Prove that the lines $P Q$ and $BC$ are parallel.

2004 Estonia National Olympiad, 5

Let $n$ and $c$ be coprime positive integers. For any integer $i$, denote by $i' $ the remainder of division of product $ci$ by $n$. Let $A_o.A_1,A_2,...,A_{n-1}$ be a regular $n$-gon. Prove that a) if $A_iA_j \parallel A_kA_i$ then $A_{i'}A_{j'} \parallel A_{k'}A_{i'}$ b) if $A_iA_j \perp A_kA_l$ then $A_{i'}A_{j'} \perp A_{k'}A_{l'}$

2021 Dutch BxMO TST, 1

Given is a cyclic quadrilateral $ABCD$ with $|AB| = |BC|$. Point $E$ is on the arc $CD$ where $A$ and $B$ are not on. Let $P$ be the intersection point of $BE$ and $CD$ , let $Q$ be the intersection point of $AE$ and $BD$ . Prove that $PQ \parallel AC$.

2021 Thailand TSTST, 3

A triangle $ABC$ with $AB<AC<BC$ is given. The point $P$ is the center of an excircle touching the line segment $AB$ at $D$. The point $Q$ is the center of an excircle touching the line segment $AC$ at $E$. The circumcircle of the triangle $ADE$ intersects $\overline{PE}$ and $\overline{QD}$ again at $G$ and $H$ respectively. The line perpendicular to $\overline{AG}$ at $G$ intersects the side $AB$ at $R$. The line perpendicular to $\overline{AH}$ at $H$ intersects the side $AC$ at $S$. Prove that $\overline{DE}$ and $\overline{RS}$ are parallel.

2015 Dutch Mathematical Olympiad, 3 juniors

In quadrilateral $ABCD$ sides $BC$ and $AD$ are parallel. In each of the four vertices we draw an angular bisector. The angular bisectors of angles $A$ and $B$ intersect in point $P$, those of angles $B$ and $C$ intersect in point $Q$, those of angles $C$ and $D$ intersect in point $R$, and those of angles $D$ and $A$ intersect in point S. Suppose that $PS$ is parallel to $QR$. Prove that $|AB| =|CD|$. [asy] unitsize(1.2 cm); pair A, B, C, D, P, Q, R, S; A = (0,0); D = (3,0); B = (0.8,1.5); C = (3.2,1.5); S = extension(A, incenter(A,B,D), D, incenter(A,C,D)); Q = extension(B, incenter(A,B,C), C, C + incenter(A,B,D) - A); P = extension(A, S, B, Q); R = extension(D, S, C, Q); draw(A--D--C--B--cycle); draw(B--Q--C); draw(A--S--D); dot("$A$", A, SW); dot("$B$", B, NW); dot("$C$", C, NE); dot("$D$", D, SE); dot("$P$", P, dir(90)); dot("$Q$", Q, dir(270)); dot("$R$", R, dir(90)); dot("$S$", S, dir(90)); [/asy] Attention: the figure is not drawn to scale.

2016 Ukraine Team Selection Test, 8

Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.

2009 Moldova National Olympiad, 9.3

Let $ABC$ be an equilateral triangle. The points $M$ and $K$ are located in different half-planes with respect to line $BC$, so that the point $M \in (AB)$ ¸and the triangle $MKC$ is equilateral. Prove that the lines $AC$ and $BK$ are parallel.

2009 Oral Moscow Geometry Olympiad, 3

In the triangle $ABC$, $AA_1$ and $BB_1$ are altitudes. On the side $AB$ , points $M$ and $K$ are selected so that $B_1K \parallel BC$ and $A_1M \parallel AC$. Prove that the angle $AA_1K$ is equal to the angle $BB_1M$. (D. Prokopenko)

2018 Thailand TST, 1

Let $E$ and $F$ be points on side $BC$ of a triangle $\vartriangle ABC$. Points $K$ and $L$ are chosen on segments $AB$ and $AC$, respectively, so that $EK \parallel AC$ and $FL \parallel AB$. The incircles of $\vartriangle BEK$ and $\vartriangle CFL$ touches segments $AB$ and $AC$ at $X$ and $Y$ , respectively. Lines $AC$ and $EX$ intersect at $M$, and lines $AB$ and $FY$ intersect at $N$. Given that $AX = AY$, prove that $MN \parallel BC$.

1962 Dutch Mathematical Olympiad, 1

Given a triangle $ABC$ with $\angle C = 90^o$. a) Construct the circle with center $C$, so that one of the tangents from $A$ to that circle is parallel to one of the tangents from $B$ to that circle. b) A circle with center $C$ has two parallel tangents passing through A and go respectively. If $AC = b$ and $BC = a$, express the radius of the circle in terms of $a$ and $b$.

2016 Estonia Team Selection Test, 12

The circles $k_1$ and $k_2$ intersect at points $M$ and $N$. The line $\ell$ intersects with the circle $k_1$ at points $A$ and $C$ and with circle $k_2$ at points $B$ and $D$, so that points $A, B, C$ and $D$ are on the line $\ell$ in that order. Let $X$ be a point on line $MN$ such that the point $M$ is between points $X$ and $N$. Lines $AX$ and $BM$ intersect at point $P$ and lines $DX$ and $CM$ intersect at point $Q$. Prove that $PQ \parallel \ell $.

2016 Thailand Mathematical Olympiad, 8

Let $\vartriangle ABC$ be an acute triangle with incenter $I$. The line passing through $I$ parallel to $AC$ intersects $AB$ at $M$, and the line passing through $I$ parallel to $AB$ intersects $AC$ at $N$. Let the line $MN$ intersect the circumcircle of $\vartriangle ABC$ at $X$ and $Y$ . Let $Z$ be the midpoint of arc $BC$ (not containing $A$). Prove that $I$ is the orthocenter of $\vartriangle XY Z$

2012 NZMOC Camp Selection Problems, 5

Let $ABCD$ be a quadrilateral in which every angle is smaller than $180^o$. If the bisectors of angles $\angle DAB$ and $\angle DCB$ are parallel, prove that $\angle ADC = \angle ABC$

1999 Estonia National Olympiad, 3

Prove that the line segment, joining the orthocenter and the intersection point of the medians of the acute-angled triangle $ABC$ is parallel to the side $AB$ iff $\tan \angle A \cdot \tan \angle B = 3$.

2017 Sharygin Geometry Olympiad, 5

Let $BH_b, CH_c$ be altitudes of an acute-angled triangle $ABC$. The line $H_bH_c$ meets the circumcircle of $ABC$ at points $X$ and $Y$. Points $P,Q$ are the reflections of $X,Y$ about $AB,AC$ respectively. Prove that $PQ \parallel BC$. [i]Proposed by Pavel Kozhevnikov[/i]

2015 Costa Rica - Final Round, G3

Let $\vartriangle A_1B_1C_1$ and $l_1, m_1, n_1$ be the trisectors closest to $A_1B_1$, $B_1C_1$, $C_1A_1$ of the angles $A_1, B_1, C_1$ respectively. Let $A_2 = l_1 \cap n_1$, $B_2 = m_1 \cap l_1$, $C_2 = n_1 \cap m_1$. So on we create triangles $\vartriangle A_nB_nC_n$ . If $\vartriangle A_1B_1C_1$ is equilateral prove that exists $n \in N$, such that all the sides of $\vartriangle A_nB_nC_n$ are parallel to the sides of $\vartriangle A_1B_1C_1$.

2019 Dutch IMO TST, 4

Let $\Delta ABC$ be a scalene triangle. Points $D,E$ lie on side $\overline{AC}$ in the order, $A,E,D,C$. Let the parallel through $E$ to $BC$ intersect $\odot (ABD)$ at $F$, such that, $E$ and $F$ lie on the same side of $AB$. Let the parallel through $E$ to $AB$ intersect $\odot (BDC)$ at $G$, such that, $E$ and $G$ lie on the same side of $BC$. Prove, Points $D,F,E,G$ are concyclic

Ukrainian From Tasks to Tasks - geometry, 2011.8

On the median $AD$ of the isosceles triangle $ABC$, point $E$ is marked. Point $F$ is the projection of point $E$ on the line $BC$, point $M$ lies on the segment $EF$, points $N$ and $P$ are projections of point $M$ on the lines $AC$ and $AB$, respectively. Prove that the bisectors of the angles $PMN$ and $PEN$ are parallel.

2015 Singapore Junior Math Olympiad, 2

In a convex hexagon $ABCDEF, AB$ is parallel to $DE, BC$ is parallel to $EF$ and $CD$ is parallel to $FA$. Prove that the triangles $ACE$ and $BDF$ have the same area.

1987 All Soviet Union Mathematical Olympiad, 447

Three lines are drawn parallel to the sides of the triangles in the opposite to the vertex, not belonging to the side, part of the plane. The distance from each side to the corresponding line equals the length of the side. Prove that six intersection points of those lines with the continuations of the sides are situated on one circumference.

2021 Dutch BxMO TST, 1

Given is a cyclic quadrilateral $ABCD$ with $|AB| = |BC|$. Point $E$ is on the arc $CD$ where $A$ and $B$ are not on. Let $P$ be the intersection point of $BE$ and $CD$ , let $Q$ be the intersection point of $AE$ and $BD$ . Prove that $PQ \parallel AC$.

2016 Bosnia and Herzegovina Team Selection Test, 1

Let $ABCD$ be a quadrilateral inscribed in circle $k$. Lines $AB$ and $CD$ intersect at point $E$ such that $AB=BE$. Let $F$ be the intersection point of tangents on circle $k$ in points $B$ and $D$, respectively. If the lines $AB$ and $DF$ are parallel, prove that $A$, $C$ and $F$ are collinear.