This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2013 USA TSTST, 1

Let $ABC$ be a triangle and $D$, $E$, $F$ be the midpoints of arcs $BC$, $CA$, $AB$ on the circumcircle. Line $\ell_a$ passes through the feet of the perpendiculars from $A$ to $DB$ and $DC$. Line $m_a$ passes through the feet of the perpendiculars from $D$ to $AB$ and $AC$. Let $A_1$ denote the intersection of lines $\ell_a$ and $m_a$. Define points $B_1$ and $C_1$ similarly. Prove that triangle $DEF$ and $A_1B_1C_1$ are similar to each other.

1981 All Soviet Union Mathematical Olympiad, 315

The quadrangles $AMBE, AHBT, BKXM$, and $CKXP$ are parallelograms. Prove that the quadrangle $ABTE$ is also parallelogram. (the vertices are mentioned counterclockwise)

2009 Tournament Of Towns, 2

$A; B; C; D; E$ and $F$ are points in space such that $AB$ is parallel to $DE$, $BC$ is parallel to $EF$, $CD$ is parallel to $FA$, but $AB \neq DE$. Prove that all six points lie in the same plane. [i](4 points)[/i]

2010 Czech-Polish-Slovak Match, 3

Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.

1994 Kurschak Competition, 1

The ratio of the sides of a parallelogram is $\lambda>1$. Given $\lambda$, determine the maximum of the acute angle subtended by the diagonals of the parallelogram.

2003 IMO Shortlist, 4

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2011 All-Russian Olympiad, 3

Let $ABC$ be an equilateral triangle. A point $T$ is chosen on $AC$ and on arcs $AB$ and $BC$ of the circumcircle of $ABC$, $M$ and $N$ are chosen respectively, so that $MT$ is parallel to $BC$ and $NT$ is parallel to $AB$. Segments $AN$ and $MT$ intersect at point $X$, while $CM$ and $NT$ intersect in point $Y$. Prove that the perimeters of the polygons $AXYC$ and $XMBNY$ are the same.

1979 IMO Longlists, 71

Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$

2004 AMC 10, 19

A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet? [asy] size(250);defaultpen(linewidth(0.8)); draw(ellipse(origin, 3, 1)); fill((3,0)--(3,2)--(-3,2)--(-3,0)--cycle, white); draw((3,0)--(3,16)^^(-3,0)--(-3,16)); draw((0, 15)--(3, 12)^^(0, 16)--(3, 13)); filldraw(ellipse((0, 16), 3, 1), white, black); draw((-3,11)--(3, 5)^^(-3,10)--(3, 4)); draw((-3,2)--(0,-1)^^(-3,1)--(-1,-0.89)); draw((0,-1)--(0,15), dashed); draw((3,-2)--(3,-4)^^(-3,-2)--(-3,-4)); draw((-7,0)--(-5,0)^^(-7,16)--(-5,16)); draw((3,-3)--(-3,-3), Arrows(6)); draw((-6,0)--(-6,16), Arrows(6)); draw((-2,9)--(-1,9), Arrows(3)); label("$3$", (-1.375,9.05), dir(260), fontsize(7)); label("$A$", (0,15), N); label("$B$", (0,-1), NE); label("$30$", (0, -3), S); label("$80$", (-6, 8), W);[/asy] $ \textbf{(A)}\; 120\qquad \textbf{(B)}\; 180\qquad \textbf{(C)}\; 240\qquad \textbf{(D)}\; 360\qquad \textbf{(E)}\; 480$

1998 AIME Problems, 3

The graph of $y^2+2xy+40|x|=400$ partitions the plane into several regions. What is the area of the bounded region?

1970 AMC 12/AHSME, 30

In the accompanying figure, segments $AB$ and $CD$ are parallel, the measure of angle $D$ is twice the measure of angle $B$, and the measures of segments $AB$ and $CD$ are $a$ and $b$ respectively. Then the measure of $AB$ is equal to $\textbf{(A) }\dfrac{1}{2}a+2b\qquad\textbf{(B) }\dfrac{3}{2}b+\dfrac{3}{4}a\qquad\textbf{(C) }2a-b\qquad\textbf{(D) }4b-\dfrac{1}{2}a\qquad \textbf{(E) }a+b$ [asy] size(175); defaultpen(linewidth(0.8)); real r=50, a=4,b=2.5,c=6.25; pair A=origin,B=c*dir(r),D=(a,0),C=shift(b*dir(r))*D; draw(A--B--C--D--cycle); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,E); label("$D$",D,S); label("$a$",D/2,N); label("$b$",(C+D)/2,NW); //Credit to djmathman for the diagram[/asy]

1997 Federal Competition For Advanced Students, Part 2, 3

Let be given a triangle $ABC$. Points $P$ on side $AC$ and $Y$ on the production of $CB$ beyond $B$ are chosen so that $Y$ subtends equal angles with $AP$ and $PC$. Similarly, $Q$ on side $BC$ and $X$ on the production of $AC$ beyond $C$ are such that $X$ subtends equal angles with $BQ$ and $QC$. Lines $YP$ and $XB$ meet at $R$, $XQ$ and $YA$ meet at $S$, and $XB$ and $YA$ meet at $D$. Prove that $PQRS$ is a parallelogram if and only if $ACBD$ is a cyclic quadrilateral.

1997 Pre-Preparation Course Examination, 5

Let $H$ be the orthocenter of the triangle $ABC$ and $P$ an arbitrary point on circumcircle of triangle. $BH$ meets $AC$ at $E$. $PAQB$ and $PARC$ are two parallelograms and $AQ$ meets $HR$ at $X$. Show that $EX \parallel AP$.

2004 USA Team Selection Test, 1

Suppose $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are real numbers such that \[ (a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 -1)(b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 - 1) > (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n - 1)^2. \] Prove that $a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 > 1$ and $b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 > 1$.

2019 China Girls Math Olympiad, 4

Given parallelogram $OABC$ in the coodinate with $O$ the origin and $A,B,C$ be lattice points. Prove that for all lattice point $P$ in the internal or boundary of $\triangle ABC$, there exists lattice points $Q,R$(can be the same) in the internal or boundary of $\triangle OAC$ with $\overrightarrow{OP}=\overrightarrow{OQ}+\overrightarrow{OR}$.

2011 Postal Coaching, 4

Consider $2011^2$ points arranged in the form of a $2011 \times 2011$ grid. What is the maximum number of points that can be chosen among them so that no four of them form the vertices of either an isosceles trapezium or a rectangle whose parallel sides are parallel to the grid lines?

2024 Singapore Junior Maths Olympiad, Q2

Let $ABCD$ be a parallelogram and points $E,F$ be on its exterior. If triangles $BCF$ and $DEC$ are similar, i.e. $\triangle BCF \sim \triangle DEC$, prove that triangle $AEF$ is similar to these two triangles.

2010 Iran MO (3rd Round), 4

in a triangle $ABC$, $I$ is the incenter. $BI$ and $CI$ cut the circumcircle of $ABC$ at $E$ and $F$ respectively. $M$ is the midpoint of $EF$. $C$ is a circle with diameter $EF$. $IM$ cuts $C$ at two points $L$ and $K$ and the arc $BC$ of circumcircle of $ABC$ (not containing $A$) at $D$. prove that $\frac{DL}{IL}=\frac{DK}{IK}$.(25 points)

1989 AMC 8, 15

The area of the shaded region $\text{BEDC}$ in parallelogram $\text{ABCD}$ is [asy] unitsize(10); pair A,B,C,D,E; A=origin; B=(4,8); C=(14,8); D=(10,0); E=(4,0); draw(A--B--C--D--cycle); fill(B--E--D--C--cycle,gray); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,S); label("$10$",(9,8),N); label("$6$",(7,0),S); label("$8$",(4,4),W); draw((3,0)--(3,1)--(4,1)); [/asy] $\text{(A)}\ 24 \qquad \text{(B)}\ 48 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 64 \qquad \text{(E)}\ 80$

2020-21 IOQM India, 19

Let $ABCD$ be a parallelogram. Let $E$ and $F$ be the midpoints of sides $AB$ and $BC$ respectively. The lines $EC$ and $FD$ intersect at $P$ and form four triangles $APB, BPC, CPD, DPA$. If the area of the parallelogram is $100$, what is the maximum area of a triangles among these four triangles?

2000 National Olympiad First Round, 5

$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$ $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 3\sqrt2 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4\sqrt2 \qquad\textbf{(E)}\ 2\sqrt6 $

2014 Tuymaada Olympiad, 7

A parallelogram $ABCD$ is given. The excircle of triangle $\triangle{ABC}$ touches the sides $AB$ at $L$ and the extension of $BC$ at $K$. The line $DK$ meets the diagonal $AC$ at point $X$; the line $BX$ meets the median $CC_1$ of trianlge $\triangle{ABC}$ at ${Y}$. Prove that the line $YL$, median $BB_1$ of triangle $\triangle{ABC}$ and its bisector $CC^\prime$ have a common point. [i](A. Golovanov)[/i]

2006 Iran MO (3rd Round), 4

$f: \mathbb R^{n}\longrightarrow\mathbb R^{n}$ is a bijective map, that Image of every $n-1$-dimensional affine space is a $n-1$-dimensional affine space. 1) Prove that Image of every line is a line. 2) Prove that $f$ is an affine map. (i.e. $f=goh$ that $g$ is a translation and $h$ is a linear map.)

1996 Bosnia and Herzegovina Team Selection Test, 3

Let $M$ be a point inside quadrilateral $ABCD$ such that $ABMD$ is parallelogram. If $\angle CBM = \angle CDM$ prove that $\angle ACD = \angle BCM$

2007 Baltic Way, 7

A [i]squiggle[/i] is composed of six equilateral triangles with side length $1$ as shown in the figure below. Determine all possible integers $n$ such that an equilateral triangle with side length $n$ can be fully covered with [i]squiggle[/i]s (rotations and reflections of [i]squiggle[/i]s are allowed, overlappings are not). [asy] import graph; size(100); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; draw((0,0)--(0.5,1),linewidth(2pt)); draw((0.5,1)--(1,0),linewidth(2pt)); draw((0,0)--(3,0),linewidth(2pt)); draw((1.5,1)--(2,0),linewidth(2pt)); draw((2,0)--(2.5,1),linewidth(2pt)); draw((0.5,1)--(2.5,1),linewidth(2pt)); draw((1,0)--(2,2),linewidth(2pt)); draw((2,2)--(3,0),linewidth(2pt)); dot((0,0),ds); dot((1,0),ds); dot((0.5,1),ds); dot((2,0),ds); dot((1.5,1),ds); dot((3,0),ds); dot((2.5,1),ds); dot((2,2),ds); clip((-4.28,-10.96)--(-4.28,6.28)--(16.2,6.28)--(16.2,-10.96)--cycle);[/asy]