This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

Kyiv City MO 1984-93 - geometry, 1986.8.2

A rectangle is said to be inscribed in a parallelogram if its vertices lie one on each side of the parallelogram. On the larger side $AB$ of the parallelogram $ABCD$, find all those points $K$ that are the vertices of the rectangles inscribed in $ABCD$.

2014 May Olympiad, 2

In a convex quadrilateral $ABCD$, let $M$, $N$, $P$, and $Q$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. If $MP$ and $NQ$ divide $ABCD$ in four quadrilaterals with the same area, prove that $ABCD$ is a parallelogram.

2010 Romania Team Selection Test, 1

Let $P$ be a point in the plane and let $\gamma$ be a circle which does not contain $P$. Two distinct variable lines $\ell$ and $\ell'$ through $P$ meet the circle $\gamma$ at points $X$ and $Y$, and $X'$ and $Y'$, respectively. Let $M$ and $N$ be the antipodes of $P$ in the circles $PXX'$ and $PYY'$, respectively. Prove that the line $MN$ passes through a fixed point. [i]Mihai Chis[/i]

2015 India National Olympiad, 5

Let $ABCD$ be a convex quadrilateral.Let diagonals $AC$ and $BD$ intersect at $P$. Let $PE,PF,PG$ and $PH$ are altitudes from $P$ on the side $AB,BC,CD$ and $DA$ respectively. Show that $ABCD$ has a incircle if and only if $\frac{1}{PE}+\frac{1}{PG}=\frac{1}{PF}+\frac{1}{PH}.$

1991 AMC 8, 10

The area in square units of the region enclosed by parallelogram $ABCD$ is [asy] unitsize(24); pair A,B,C,D; A=(-1,0); B=(0,2); C=(4,2); D=(3,0); draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); label("$A$",A,SW); label("$B$",B,NW); [/asy] $\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

2005 Baltic Way, 14

Let the medians of the triangle $ABC$ meet at $G$. Let $D$ and $E$ be different points on the line $BC$ such that $DC=CE=AB$, and let $P$ and $Q$ be points on the segments $BD$ and $BE$, respectively, such that $2BP=PD$ and $2BQ=QE$. Determine $\angle PGQ$.

1990 IMO Longlists, 94

Given integer $n > 1$ and real number $t \geq 1$. $P$ is a parallelogram with four vertices $(0, 0), (0, t), (tF_{2n+1}, tF_{2n}), (tF_{2n+1}, tF_{2n} + t)$. Here, ${F_n}$ is the $n$-th term of Fibonacci sequence defined by $F_0 = 0, F_1 = 1$ and $F_{m+1} = F_m + F_{m-1}$. Let $L$ be the number of integral points (whose coordinates are integers) interior to $P$, and $M$ be the area of $P$, which is $t^2F_{2n+1}.$ [b][i]i)[/i][/b] Prove that for any integral point $(a, b)$, there exists a unique pair of integers $(j, k)$ such that$ j(F_{n+1}, F_n) + k(F_n, F_{n-1}) = (a, b)$, that is,$ jF_{n+1} + kF_n = a$ and $jF_n + kF_{n-1} = b.$ [i][b]ii)[/b][/i] Using [i][b]i)[/b][/i] or not, prove that $|\sqrt L-\sqrt M| \leq \sqrt 2.$

1998 Baltic Way, 14

Given triangle $ABC$ with $AB<AC$. The line passing through $B$ and parallel to $AC$ meets the external angle bisector of $\angle BAC$ at $D$. The line passing through $C$ and parallel to $AB$ meets this bisector at $E$. Point $F$ lies on the side $AC$ and satisfies the equality $FC=AB$. Prove that $DF=FE$.

2010 Iran Team Selection Test, 6

Let $M$ be an arbitrary point on side $BC$ of triangle $ABC$. $W$ is a circle which is tangent to $AB$ and $BM$ at $T$ and $K$ and is tangent to circumcircle of $AMC$ at $P$. Prove that if $TK||AM$, circumcircles of $APT$ and $KPC$ are tangent together.

2005 Iran MO (2nd round), 2

$BC$ is a diameter of a circle and the points $X,Y$ are on the circle such that $XY\perp BC$. The points $P,M$ are on $XY,CY$ (or their stretches), respectively, such that $CY||PB$ and $CX||PM$. Let $K$ be the meet point of the lines $XC,BP$. Prove that $PB\perp MK$.

2007 Estonia Math Open Junior Contests, 2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

2000 All-Russian Olympiad, 3

Let $O$ be the center of the circumcircle $\omega$ of an acute-angle triangle $ABC$. A circle $\omega_1$ with center $K$ passes through $A$, $O$, $C$ and intersects $AB$ at $M$ and $BC$ at $N$. Point $L$ is symmetric to $K$ with respect to line $NM$. Prove that $BL \perp AC$.

2006 Rioplatense Mathematical Olympiad, Level 3, 1

The acute triangle $ABC$ with $AB\neq AC$ has circumcircle $\Gamma$, circumcenter $O$, and orthocenter $H$. The midpoint of $BC$ is $M$, and the extension of the median $AM$ intersects $\Gamma$ at $N$. The circle of diameter $AM$ intersects $\Gamma$ again at $A$ and $P$. Show that the lines $AP$, $BC$, and $OH$ are concurrent if and only if $AH = HN$.

2010 Romania Team Selection Test, 4

Two circles in the plane, $\gamma_1$ and $\gamma_2$, meet at points $M$ and $N$. Let $A$ be a point on $\gamma_1$, and let $D$ be a point on $\gamma_2$. The lines $AM$ and $AN$ meet again $\gamma_2$ at points $B$ and $C$, respectively, and the lines $DM$ and $DN$ meet again $\gamma_1$ at points $E$ and $F$, respectively. Assume the order $M$, $N$, $F$, $A$, $E$ is circular around $\gamma_1$, and the segments $AB$ and $DE$ are congruent. Prove that the points $A$, $F$, $C$ and $D$ lie on a circle whose centre does not depend on the position of the points $A$ and $D$ on the respective circles, subject to the assumptions above. [i]***[/i]

2014 Contests, 2

Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.

2020 Czech-Austrian-Polish-Slovak Match, 1

Let $ABCD$ be a parallelogram whose diagonals meet at $P$. Denote by $M$ the midpoint of $AB$. Let $Q$ be a point such that $QA$ is tangent to the circumcircle of $MAD$ and $QB$ is tangent to the circumcircle of $MBC$. Prove that points $Q,M,P$ are collinear. (Patrik Bak, Slovakia)

PEN R Problems, 9

Prove that if a lattice parallellogram contains an odd number of lattice points, then its centroid.

2014 Turkey Team Selection Test, 3

Let $r,R$ and $r_a$ be the radii of the incircle, circumcircle and A-excircle of the triangle $ABC$ with $AC>AB$, respectively. $I,O$ and $J_A$ are the centers of these circles, respectively. Let incircle touches the $BC$ at $D$, for a point $E \in (BD)$ the condition $A(IEJ_A)=2A(IEO)$ holds. Prove that \[ED=AC-AB \iff R=2r+r_a.\]

2019 Singapore Senior Math Olympiad, 1

In a parallelogram $ABCD$, the bisector of $\angle A$ intersects $BC$ at $M$ and the extension of $DC$ at $N$. Let $O$ be the circumcircle of the triangle $MCN$. Prove that $\angle OBC = \angle ODC$

2009 Junior Balkan Team Selection Test, 3

Let $ ABCD$ be a convex quadrilateral, such that $ \angle CBD\equal{}2\cdot\angle ADB, \angle ABD\equal{}2\cdot\angle CDB$ and $ AB\equal{}CB$. Prove that quadrilateral $ ABCD$ is a kite.

2010 Ukraine Team Selection Test, 5

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

2000 All-Russian Olympiad Regional Round, 10.3

Given a parallelogram $ABCD$ with angle $A$ equal to $60^o$. Point $O$ is the the center of a circle circumscribed around triangle $ABD$. Line $AO$ intersects the bisector of the exterior angle $C$ at point $K$. Find the ratio $AO/OK$.

2014 Czech-Polish-Slovak Junior Match, 1

On the plane circles $k$ and $\ell$ are intersected at points $C$ and $D$, where circle $k$ passes through the center $L$ of circle $\ell$. The straight line passing through point $D$ intersects circles $k$ and $\ell$ for the second time at points $A$ and $B$ respectively in such a way that $D$ is the interior point of segment $AB$. Show that $AB = AC$.

2021 Bolivian Cono Sur TST, 1

Inside a rhombus $ABCD$ with $\angle BAD=60$, points $F,H,G$ are choosen on lines $AD,DC,AC$ respectivily such that $DFGH$ is a paralelogram. Show that $BFH$ is a equilateral triangle.