This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

2002 Regional Competition For Advanced Students, 3

In the convex $ABCDEF$ (has all interior angles less than $180^o$) with the perimeter $s$ the triangles $ACE$ and $BDF$ have perimeters $u$ and $v$ respectively. a) Show the inequalities $\frac{1}{2} \le \frac{s}{u+v}\le 1$ b) Check whether $1$ is replaced by a smaller number or $1/2$ by a larger number can the inequality remains valid for all convex hexagons.

1996 IMO Shortlist, 9

In the plane, consider a point $ X$ and a polygon $ \mathcal{F}$ (which is not necessarily convex). Let $ p$ denote the perimeter of $ \mathcal{F}$, let $ d$ be the sum of the distances from the point $ X$ to the vertices of $ \mathcal{F}$, and let $ h$ be the sum of the distances from the point $ X$ to the sidelines of $ \mathcal{F}$. Prove that $ d^2 \minus{} h^2\geq\frac {p^2}{4}.$

1949 Moscow Mathematical Olympiad, 159

Consider a closed broken line of perimeter $1$ on a plane. Prove that a disc of radius $\frac14$ can cover this line.

1995 May Olympiad, 4

We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?

2002 Iran Team Selection Test, 4

$O$ is a point in triangle $ABC$. We draw perpendicular from $O$ to $BC,AC,AB$ which intersect $BC,AC,AB$ at $A_{1},B_{1},C_{1}$. Prove that $O$ is circumcenter of triangle $ABC$ iff perimeter of $ABC$ is not less than perimeter of triangles $AB_{1}C_{1},BC_{1}A_{1},CB_{1}A_{1}$.

1985 IMO Longlists, 7

A convex quadrilateral is inscribed in a circle of radius $1$. Prove that the difference between its perimeter and the sum of the lengths of its diagonals is greater than zero and less than $2.$

VMEO III 2006, 10.4

Given a convex polygon $ G$, show that there are three vertices of $ G$ which form a triangle so that it's perimeter is not less than 70% of the polygon's perimeter.

2021 MIG, 8

A square's area is equal to the perimeter of a $15$ by $17$ rectangle. What is this square's perimeter? $\textbf{(A) }20\qquad\textbf{(B) }32\qquad\textbf{(C) }36\qquad\textbf{(D) }40\qquad\textbf{(E) }56$

2005 Purple Comet Problems, 3

Four rectangular strips each measuring $4$ by $16$ inches are laid out with two vertical strips crossing two horizontal strips forming a single polygon which looks like a tic-tack-toe pattern. What is the perimeter of this polygon? [asy] size(100); draw((1,0)--(2,0)--(2,1)--(3,1)--(3,0)--(4,0)--(4,1)--(5,1)--(5,2)--(4,2)--(4,3)--(5,3)--(5,4)--(4,4)--(4,5)--(3,5)--(3,4)--(2,4)--(2,5)--(1,5)--(1,4)--(0,4)--(0,3)--(1,3)--(1,2)--(0,2)--(0,1)--(1,1)--(1,0)); draw((2,2)--(2,3)--(3,3)--(3,2)--cycle); [/asy]

2005 CentroAmerican, 5

Let $ABC$ be a triangle, $H$ the orthocenter and $M$ the midpoint of $AC$. Let $\ell$ be the parallel through $M$ to the bisector of $\angle AHC$. Prove that $\ell$ divides the triangle in two parts of equal perimeters. [i]Pedro Marrone, Panamá[/i]

2005 AMC 8, 4

A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are 6.1 cm, 8.2 cm and 9.7 cm. What is the area of the square in square centimeters? $ \textbf{(A)}\ 24\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 64 $

2010 Sharygin Geometry Olympiad, 8

Given is a regular polygon. Volodya wants to mark $k$ points on its perimeter so that any another regular polygon (maybe having a different number of sides) doesn’t contain all marked points on its perimeter. Find the minimal $k$ sufficient for any given polygon.

Estonia Open Junior - geometry, 2007.1.4

Call a scalene triangle K [i]disguisable[/i] if there exists a triangle K′ similar to K with two shorter sides precisely as long as the two longer sides of K, respectively. Call a disguisable triangle [i]integral[/i] if the lengths of all its sides are integers. (a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter. (b) Let K be an arbitrary integral disguisable triangle for which no smaller integral disguisable triangle similar to it exists. Prove that at least two side lengths of K are perfect squares.

Novosibirsk Oral Geo Oly VIII, 2022.1

A quadrilateral is given, in which the lengths of some two sides are equal to $1$ and $4$. Also, the diagonal of length $2$ divides it into two isosceles triangles. Find the perimeter of this quadrilateral.

1989 IMO Longlists, 73

We are given a finite collection of segments in the plane, of total length 1. Prove that there exists a line $ l$ such that the sum of the lengths of the projections of the given segments to the line $ l$ is less than $ \frac{2}{\pi}.$

2005 China Team Selection Test, 2

Cyclic quadrilateral $ABCD$ has positive integer side lengths $AB$, $BC$, $CA$, $AD$. It is known that $AD=2005$, $\angle{ABC}=\angle{ADC} = 90^o$, and $\max \{ AB,BC,CD \} < 2005$. Determine the maximum and minimum possible values for the perimeter of $ABCD$.

2000 Romania Team Selection Test, 2

Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]

1960 AMC 12/AHSME, 15

Triangle I is equilateral with side $A$, perimeter $P$, area $K$, and circumradius $R$ (radius of the circumscribed circle). Triangle II is equilateral with side $a$, perimeter $p$, area $k$, and circumradius $r$. If $A$ is different from $a$, then: $ \textbf{(A)}\ P:p = R:r \text{ } \text{only sometimes} \qquad\textbf{(B)}\ P:p = R:r \text{ } \text{always}\qquad$ $\textbf{(C)}\ P:p = K:k \text{ } \text{only sometimes} \qquad\textbf{(D)}\ R:r = K:k \text{ } \text{always}\qquad$ $\textbf{(E)}\ R:r = K:k \text{ } \text{only sometimes} $

1999 Turkey Team Selection Test, 1

Let the area and the perimeter of a cyclic quadrilateral $C$ be $A_C$ and $P_C$, respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of $C$ at the vertices of $C$ are $A_T$ and $P_T$ , respectively, prove that $\frac{A_C}{A_T} \geq \left (\frac{P_C}{P_T}\right )^2$.

1992 IMO Longlists, 66

A circle of radius $\rho$ is tangent to the sides $AB$ and $AC$ of the triangle $ABC$, and its center $K$ is at a distance $p$ from $BC$. [i](a)[/i] Prove that $a(p - \rho) = 2s(r - \rho)$, where $r$ is the inradius and $2s$ the perimeter of $ABC$. [i](b)[/i] Prove that if the circle intersect $BC$ at $D$ and $E$, then \[DE=\frac{4\sqrt{rr_1(\rho-r)(r_1-\rho)}}{r_1-r}\] where $r_1$ is the exradius corresponding to the vertex $A.$

2019 Yasinsky Geometry Olympiad, p2

The base of the quadrilateral pyramid $SABCD$ lies the $ABCD$ rectangle with the sides $AB = 1$ and $AD = 10$. The edge $SA$ of the pyramid is perpendicular to the base, $SA = 4$. On the edge of $AD$, find a point $M$ such that the perimeter of the triangle of $SMC$ was minimal.

1988 IMO, 1

Consider 2 concentric circle radii $ R$ and $ r$ ($ R > r$) with centre $ O.$ Fix $ P$ on the small circle and consider the variable chord $ PA$ of the small circle. Points $ B$ and $ C$ lie on the large circle; $ B,P,C$ are collinear and $ BC$ is perpendicular to $ AP.$ [b]i.)[/b] For which values of $ \angle OPA$ is the sum $ BC^2 \plus{} CA^2 \plus{} AB^2$ extremal? [b]ii.)[/b] What are the possible positions of the midpoints $ U$ of $ BA$ and $ V$ of $ AC$ as $ \angle OPA$ varies?

1993 Greece National Olympiad, 14

A rectangle that is inscribed in a larger rectangle (with one vertex on each side) is called [i]unstuck[/i] if it is possible to rotate (however slightly) the smaller rectangle about its center within the confines of the larger. Of all the rectangles that can be inscribed unstuck in a 6 by 8 rectangle, the smallest perimeter has the form $\sqrt{N}$, for a positive integer $N$. Find $N$.

2000 Junior Balkan Team Selection Tests - Romania, 2

Tags: geometry , perimeter , grid
In an urban area whose street plan is a grid, a person started walking from an intersection and turned right or left at every intersection he reached until he ended up in the same initial intersection. [b]a)[/b] Show that the number of intersections (not necessarily distinct) in which he were is equivalent to $ 1 $ modulo $ 4. $ [b]b)[/b] Enunciate and prove a reciprocal statement. [i]Marius Beceanu[/i]

2016 Iranian Geometry Olympiad, 1

In trapezoid $ABCD$ with $AB || CD$, $\omega_1$ and $\omega_2$ are two circles with diameters $AD$ and $BC$, respectively. Let $X$ and $Y$ be two arbitrary points on $\omega_1$ and $\omega_2$, respectively. Show that the length of segment $XY$ is not more than half the perimeter of $ABCD$. [i]Proposed by Mahdi Etesami Fard[/i]