This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

1959 AMC 12/AHSME, 21

If $p$ is the perimeter of an equilateral triangle inscribed in a circle, the area of the circle is: $ \textbf{(A)}\ \frac{\pi p^2}{3} \qquad\textbf{(B)}\ \frac{\pi p^2}{9}\qquad\textbf{(C)}\ \frac{\pi p^2}{27}\qquad\textbf{(D)}\ \frac{\pi p^2}{81} \qquad\textbf{(E)}\ \frac{\pi p^2 \sqrt3}{27} $

2011 Morocco National Olympiad, 2

Let $\alpha , \beta ,\gamma$ be the angles of a triangle $ABC$ of perimeter $ 2p $ and $R$ is the radius of its circumscribed circle. $(a)$ Prove that \[\cot^{2}\alpha +\cot^{2}\beta+\cot^{2}\gamma\geq 3\left(9\cdot \frac{R^{2}}{p^{2}} - 1\right).\] $(b)$ When do we have equality?

1987 AMC 12/AHSME, 2

A triangular corner with side lengths $DB=EB=1$ is cut from equilateral triangle $ABC$ of side length $3$. The perimeter of the remaining quadrilateral is [asy] draw((0,0)--(2,0)--(2.5,.87)--(1.5,2.6)--cycle, linewidth(1)); draw((2,0)--(3,0)--(2.5,.87)); label("3", (0.75,1.3), NW); label("1", (2.5, 0), S); label("1", (2.75,.44), NE); label("A", (1.5,2.6), N); label("B", (3,0), S); label("C", (0,0), W); label("D", (2.5,.87), NE); label("E", (2,0), S);[/asy] $\text{(A)} \ 6 \qquad \text{(B)} \ 6\frac12 \qquad \text{(C)} \ 7 \qquad \text{(D)} \ 7\frac12 \qquad \text{(E)} \ 8$

2014 Balkan MO Shortlist, N3

$\boxed{N3}$Prove that there exist infinitely many non isosceles triangles with rational side lengths$,$rational lentghs of altitudes and$,$ perimeter equal to $3.$

2019 Romanian Master of Mathematics Shortlist, G5

A quadrilateral $ABCD$ is circumscribed about a circle with center $I$. A point $P \ne I$ is chosen inside $ABCD$ so that the triangles $PAB, PBC, PCD,$ and $PDA$ have equal perimeters. A circle $\Gamma$ centered at $P$ meets the rays $PA, PB, PC$, and $PD$ at $A_1, B_1, C_1$, and $D_1$, respectively. Prove that the lines $PI, A_1C_1$, and $B_1D_1$ are concurrent. Ankan Bhattacharya, USA

2009 Postal Coaching, 4

Let $ABC$ be a triangle, and let $DEF$ be another triangle inscribed in the incircle of $ABC$. If $s$ and $s_1$ denote the semiperimeters of $ABC$ and $DEF$ respectively, prove that $2s_1 \le s$. When does equality hold?

2003 Purple Comet Problems, 4

The lengths of the diagonals of a rhombus are, in inches, two consecutive integers. The area of the rhombus is $210$ sq. in. Find its perimeter, in inches.

2015 AMC 10, 19

In $\triangle{ABC}$, $\angle{C} = 90^{\circ}$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X, Y, Z$, and $W$ lie on a circle. What is the perimeter of the triangle? $ \textbf{(A)}\ 12+9\sqrt{3}\qquad\textbf{(B)}\ 18+6\sqrt{3}\qquad\textbf{(C)}\ 12+12\sqrt{2}\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 32 $

1986 China Team Selection Test, 1

Given a square $ABCD$ whose side length is $1$, $P$ and $Q$ are points on the sides $AB$ and $AD$. If the perimeter of $APQ$ is $2$ find the angle $PCQ$.

2000 District Olympiad (Hunedoara), 4

Consider the pyramid $ VABCD, $ where $ V $ is the top and $ ABCD $ is a rectangular base. If $ \angle BVD = \angle AVC, $ then prove that the triangles $ VAC $ and $ VBD $ share the same perimeter and area.

1984 IMO Shortlist, 4

Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that: \[ n\minus{}3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n\plus{}1\over 2}\Bigr]\minus{}2,\] where $ [x]$ denotes the greatest integer not exceeding $ x$.

1964 IMO, 3

A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).

1990 IMO Longlists, 81

A circle of radius $\rho$ is tangent to the sides $AB$ and $AC$ of the triangle $ABC$, and its center $K$ is at a distance $p$ from $BC$. [i](a)[/i] Prove that $a(p - \rho) = 2s(r - \rho)$, where $r$ is the inradius and $2s$ the perimeter of $ABC$. [i](b)[/i] Prove that if the circle intersect $BC$ at $D$ and $E$, then \[DE=\frac{4\sqrt{rr_1(\rho-r)(r_1-\rho)}}{r_1-r}\] where $r_1$ is the exradius corresponding to the vertex $A.$

1999 IMO Shortlist, 1

Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]

2011 USA TSTST, 7

Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.

1978 Romania Team Selection Test, 1

In a convex quadrilateral $ ABCD, $ let $ A’,B’ $ be the orthogonal projections to $ CD $ of $ A, $ respectively, $ B. $ [b]a)[/b] Assuming that $ BB’\le AA’ $ and that the perimeter of $ ABCD $ is $ (AB+CD)\cdot BB’, $ is $ ABCD $ necessarily a trapezoid? [b]b)[/b] The same question with the addition that $ \angle BAD $ is obtuse.

2013 Hanoi Open Mathematics Competitions, 10

Consider the set of all rectangles with a given area $S$. Find the largest value o $ M = \frac{S}{2S+p + 2}$ where $p$ is the perimeter of the rectangle.

2000 Harvard-MIT Mathematics Tournament, 20

What is the minimum possible perimeter of a triangle two of whose sides are along the x- and y-axes and such that the third contains the point $(1,2)$?

Ukrainian From Tasks to Tasks - geometry, 2015.10

Can the sum of the lengths of the median, angle bisector and altitude of a triangle be equal to its perimeter if a) these segments are drawn from three different vertices? b) these segments are drawn from one vertex?

2010 Contests, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

1993 AMC 12/AHSME, 27

The sides of $\triangle ABC$ have lengths $6, 8$ and $10$. A circle with center $P$ and radius $1$ rolls around the inside of $\triangle ABC$, always remaining tangent to at least one side of the triangle. When $P$ first returns to its original position, through what distance has $P$ traveled? [asy] draw((0,0)--(8,0)--(8,6)--(0,0)); draw(Circle((4.5,1),1)); draw((4.5,2.5)..(5.55,2.05)..(6,1), EndArrow); dot((0,0)); dot((8,0)); dot((8,6)); dot((4.5,1)); label("A", (0,0), SW); label("B", (8,0), SE); label("C", (8,6), NE); label("8", (4,0), S); label("6", (8,3), E); label("10", (4,3), NW); label("P", (4.5,1), NW); [/asy] $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 14 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 17 $

2021 Iranian Geometry Olympiad, 3

As shown in the following figure, a heart is a shape consist of three semicircles with diameters $AB$, $BC$ and $AC$ such that $B$ is midpoint of the segment $AC$. A heart $\omega$ is given. Call a pair $(P, P')$ bisector if $P$ and $P'$ lie on $\omega$ and bisect its perimeter. Let $(P, P')$ and $(Q,Q')$ be bisector pairs. Tangents at points $P, P', Q$, and $Q'$ to $\omega$ construct a convex quadrilateral $XYZT$. If the quadrilateral $XYZT$ is inscribed in a circle, find the angle between lines $PP'$ and $QQ'$. [img]https://cdn.artofproblemsolving.com/attachments/3/c/8216889594bbb504372d8cddfac73b9f56e74c.png[/img] [i]Proposed by Mahdi Etesamifard - Iran[/i]

2013 ELMO Shortlist, 14

Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$. Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ [i]bad[/i] if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$. (a) Prove that $L$ is nonempty. (b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$. [i]Proposed by David Yang[/i]

1991 AIME Problems, 12

Rhombus $PQRS$ is inscribed in rectangle $ABCD$ so that vertices $P$, $Q$, $R$, and $S$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB=15$, $BQ=20$, $PR=30$, and $QS=40$. Let $m/n$, in lowest terms, denote the perimeter of $ABCD$. Find $m+n$.

1993 Rioplatense Mathematical Olympiad, Level 3, 3

Given three points $A, B$ and $C$ (not collinear) construct the equilateral triangle of greater perimeter such that each of its sides passes through one of the given points.