This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 59

1950 Moscow Mathematical Olympiad, 186

A spatial quadrilateral is circumscribed around a sphere. Prove that all the tangent points lie in one plane.

1997 Mexico National Olympiad, 4

What is the minimum number of planes determined by $6$ points in space which are not all coplanar, and among which no three are collinear?

IV Soros Olympiad 1997 - 98 (Russia), 10.11

A plane intersecting a unit cube divides it into two polyhedra. It is known that for each polyhedron the distance between any two points of it does not exceeds $\frac32$ m. What can be the cross-sectional area of a cube drawn by a plane?

1937 Moscow Mathematical Olympiad, 036

* Given a regular dodecahedron. Find how many ways are there to draw a plane through it so that its section of the dodecahedron is a regular hexagon?

2006 Sharygin Geometry Olympiad, 24

a) Two perpendicular rays are drawn through a fixed point $P$ inside a given circle, intersecting the circle at points $A$ and $B$. Find the geometric locus of the projections of $P$ on the lines $AB$. b) Three pairwise perpendicular rays passing through the fixed point $P$ inside a given sphere intersect the sphere at points $A, B, C$. Find the geometrical locus of the projections $P$ on the $ABC$ plane

2009 District Olympiad, 3

Consider the regular quadrilateral prism $ABCDA'B'C 'D'$, in which $AB = a,AA' = \frac{a \sqrt {2}}{2}$, and $M$ is the midpoint of $B' C'$. Let $F$ be the foot of the perpendicular from $B$ on line $MC$, Let determine the measure of the angle between the planes $(BDF)$ and $(HBS)$.

2010 Sharygin Geometry Olympiad, 7

Each of two regular polyhedrons $P$ and $Q$ was divided by the plane into two parts. One part of $P$ was attached to one part of $Q$ along the dividing plane and formed a regular polyhedron not equal to $P$ and $Q$. How many faces can it have?

2018 Adygea Teachers' Geometry Olympiad, 4

Given a cube $ABCDA_1B_1C_1D_1$ with edge $5$. On the edge $BB_1$ of the cube , point $K$ such thath $BK=4$. a) Construct a cube section with the plane $a$ passing through the points $K$ and $C_1$ parallel to the diagonal $BD_1$. b) Find the angle between the plane $a$ and the plane $BB_1C_1$.

1990 Romania Team Selection Test, 4

Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.

1938 Moscow Mathematical Olympiad, 040

What is the largest number of parts into which $n$ planes can divide space? We assume that the set of planes is non-degenerate in the sense that any three planes intersect in one point and no four planes have a common point (and for n=2 it is necessary to require that the planes are not parallel).

1993 Bundeswettbewerb Mathematik, 2

Let $M$ be a finite subset of the plane such that for any two different points $A,B\in M$ there is a point $C\in M$ such that $ABC$ is equilateral. What is the maximal number of points in $M?$

1999 Spain Mathematical Olympiad, 6

A plane is divided into $N$ regions by three families of parallel lines. No three lines pass through the same point. What is the smallest number of lines needed so that $N > 1999$?

2015 Sharygin Geometry Olympiad, P23

A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.

1991 Romania Team Selection Test, 2

Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation $(i, j,k,h)$ of $1,2,3,4$ denote: - $P_i$ – the orthogonal projection of $A_i$ on $A_jA_kA_h$; - $B_{ij}$ – the midpoint of the edge $A_iAj$, - $C_{ij}$ – the midpoint of segment $P_iP_j$ - $\beta_{ij}$– the plane $B_{ij}P_hP_k$ - $\delta_{ij}$ – the plane $B_{ij}P_iP_j$ - $\alpha_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_kA_h$ - $\gamma_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_iA_j$. Prove that if the points $P_i$ are not in a plane, then the following sets of planes are concurrent: (a) $\alpha_{ij}$, (b) $\beta_{ij}$, (c) $\gamma_{ij}$, (d) $\delta_{ij}$.

1992 ITAMO, 1

A cube is divided into $27$ equal smaller cubes. A plane intersects the cube. Find the maximum possible number of smaller cubes the plane can intersect.

1985 Tournament Of Towns, (093) 1

Prove that the area of a unit cube's projection on any plane equals the length of its projection on the perpendicular to this plane.

1952 Moscow Mathematical Olympiad, 227

$99$ straight lines divide a plane into $n$ parts. Find all possible values of $n$ less than $199$.

2023 Tuymaada Olympiad, 6

In the plane $n$ segments with lengths $a_1, a_2, \dots , a_n$ are drawn. Every ray beginning at the point $O$ meets at least one of the segments. Let $h_i$ be the distance from $O$ to the $i$-th segment (not the line!) Prove the inequality \[\frac{a_1}{h_1}+\frac{a_2}{h_2} + \ldots + \frac{a_i}{h_i} \geqslant 2 \pi.\]

1980 All Soviet Union Mathematical Olympiad, 293

Given $1980$ vectors in the plane, and there are some non-collinear among them. The sum of every $1979$ vectors is collinear to the vector not included in that sum. Prove that the sum of all vectors equals to the zero vector.

2019 Dürer Math Competition (First Round), P3

Anne has thought of a finite set $A \subseteq \mathbb{R}^2 $ . Bob does not know how many elements $A$ has, but his goal is to completely determine $A$. To achieve this, Bob can chooseany point $b \in \mathbb{R}^2 $ and ask Anne how far it is from$ A$ . Anne replies with the distance, defined as $min \{d(a, b) | a \in A\}$. (Here $d(a, b)$ denotes the distance between points $a, b \in \mathbb{R}$ .) Bob can ask as many questions of this type as he wants, until he can determine A with certainty. a) Can Bob achieve his goal with finitely many questions? b) What if Anne tells Bob in advance that all points of A have both coordinates in the interval$\ [0, 1]\ $? Note: $\mathbb{R}^2$ is the set of points in the plane.

1939 Moscow Mathematical Olympiad, 053

What is the greatest number of parts that $5$ spheres can divide the space into?

2016 IFYM, Sozopol, 7

A grasshopper hops from an integer point to another integer point in the plane, where every even jump has a length $\sqrt{98}$ and every odd one - $\sqrt{149}$. What’s the least number of jumps the grasshopper has to make in order to return to its starting point after odd number of jumps?

1994 Poland - Second Round, 3

A plane passing through the center of a cube intersects the cube in a cyclic hexagon. Show that this hexagon is regular.

2007 Bulgarian Autumn Math Competition, Problem 12.2

All edges of the triangular pyramid $ABCD$ are equal in length. Let $M$ be the midpoint of $DB$, $N$ is the point on $\overline{AB}$, such that $2NA=NB$ and $N\not\in AB$ and $P$ is a point on the altitude through point $D$ in $\triangle BCD$. Find $\angle MPD$ if the intersection of the pyramid with the plane $(NMP)$ is a trapezoid.

1946 Moscow Mathematical Olympiad, 111

Given two intersecting planes $\alpha$ and $\beta$ and a point $A$ on the line of their intersection. Prove that of all lines belonging to $\alpha$ and passing through $A$ the line which is perpendicular to the intersection line of $\alpha$ and $\beta$ forms the greatest angle with $\beta$.