Found problems: 216
2013 AMC 8, 20
A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle?
$\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$
1993 Greece National Olympiad, 13
Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
2007 AMC 8, 14
The base of isosceles $\triangle{ABC}$ is $24$ and its area is $60$. What is the length of one of the congruent sides?
$\textbf{(A)}\ 5 \qquad
\textbf{(B)}\ 8 \qquad
\textbf{(C)}\ 13 \qquad
\textbf{(D)}\ 14 \qquad
\textbf{(E)}\ 18$
2014 AMC 10, 9
The two legs of a right triangle, which are altitudes, have lengths $2\sqrt3$ and $6$. How long is the third altitude of the triangle?
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5 $
2013 Argentina Cono Sur TST, 3
$1390$ ants are placed near a line, such that the distance between their heads and the line is less than $1\text{cm}$ and the distance between the heads of two ants is always larger than $2\text{cm}$. Show that there is at least one pair of ants such that the distance between their heads is at least $10$ meters (consider the head of an ant as point).
2004 AMC 12/AHSME, 22
Three mutually tangent spheres of radius $ 1$ rest on a horizontal plane. A sphere of radius $ 2$ rests on them. What is the distance from the plane to the top of the larger sphere?
$ \textbf{(A)}\ 3 \plus{} \frac {\sqrt {30}}{2} \qquad \textbf{(B)}\ 3 \plus{} \frac {\sqrt {69}}{3} \qquad \textbf{(C)}\ 3 \plus{} \frac {\sqrt {123}}{4}\qquad \textbf{(D)}\ \frac {52}{9}\qquad \textbf{(E)}\ 3 \plus{} 2\sqrt2$
1965 AMC 12/AHSME, 16
Let line $ AC$ be perpendicular to line $ CE$. Connect $ A$ to $ D$, the midpoint of $ CE$, and connect $ E$ to $ B$, the midpoint of $ AC$. If $ AD$ and $ EB$ intersect in point $ F$, and $ \overline{BC} \equal{} \overline{CD} \equal{} 15$ inches, then the area of triangle $ DFE$, in square inches, is:
$ \textbf{(A)}\ 50 \qquad \textbf{(B)}\ 50\sqrt {2} \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ \frac {15}{2}\sqrt {105} \qquad \textbf{(E)}\ 100$
1990 Brazil National Olympiad, 3
Each face of a tetrahedron is a triangle with sides $a, b,$c and the tetrahedon has circumradius 1. Find $a^2 + b^2 + c^2$.
2012 AIME Problems, 5
In the accompanying figure, the outer square has side length 40. A second square S' of side length 15 is constructed inside S with the same center as S and with sides parallel to those of S. From each midpoint of a side of S, segments are drawn to the two closest vertices of S'. The result is a four-pointed starlike figure inscribed in S. The star figure is cut out and then folded to form a pyramid with base S'. Find the volume of this pyramid.
[asy]
draw((0,0)--(8,0)--(8,8)--(0,8)--(0,0));
draw((2.5,2.5)--(4,0)--(5.5,2.5)--(8,4)--(5.5,5.5)--(4,8)--(2.5,5.5)--(0,4)--(2.5,2.5)--(5.5,2.5)--(5.5,5.5)--(2.5,5.5)--(2.5,2.5));
[/asy]
2004 AIME Problems, 14
A unicorn is tethered by a 20-foot silver rope to the base of a magician's cylindrical tower whose radius is 8 feet. The rope is attached to the tower at ground level and to the unicorn at a height of 4 feet. The unicorn has pulled the rope taut, the end of the rope is 4 feet from the nearest point on the tower, and the length of the rope that is touching the tower is $\frac{a-\sqrt{b}}c$ feet, where $a, b,$ and $c$ are positive integers, and $c$ is prime. Find $a+b+c$.
2011 International Zhautykov Olympiad, 1
Given is trapezoid $ABCD$, $M$ and $N$ being the midpoints of the bases of $AD$ and $BC$, respectively.
a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment $MN$.
b) Does the statement of point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line $MN$?
1952 AMC 12/AHSME, 39
If the perimeter of a rectangle is $ p$ and its diagonal is $ d$, the difference between the length and width of the rectangle is:
$ \textbf{(A)}\ \frac {\sqrt {8d^2 \minus{} p^2}}{2} \qquad\textbf{(B)}\ \frac {\sqrt {8d^2 \plus{} p^2}}{2} \qquad\textbf{(C)}\ \frac {\sqrt {6d^2 \minus{} p^2}}{2}$
$ \textbf{(D)}\ \frac {\sqrt {6d^2 \plus{} p^2}}{2} \qquad\textbf{(E)}\ \frac {8d^2 \minus{} p^2}{4}$
2010 AMC 10, 19
A circle with center $ O$ has area $ 156\pi$. Triangle $ ABC$ is equilateral, $ \overline{BC}$ is a chord on the circle, $ OA \equal{} 4\sqrt3$, and point $ O$ is outside $ \triangle ABC$. What is the side length of $ \triangle ABC$?
$ \textbf{(A)}\ 2\sqrt3 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 4\sqrt3 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 18$
2014 AMC 12/AHSME, 17
A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$?
[asy]
import graph3;
import solids;
real h=2+2*sqrt(7);
currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2));
currentlight=light(4,-4,4);
draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0));
draw(shift((1,3,1))*unitsphere,gray(0.85));
draw(shift((3,3,1))*unitsphere,gray(0.85));
draw(shift((3,1,1))*unitsphere,gray(0.85));
draw(shift((1,1,1))*unitsphere,gray(0.85));
draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85));
draw(shift((1,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,3,h-1))*unitsphere,gray(0.85));
draw(shift((3,1,h-1))*unitsphere,gray(0.85));
draw(shift((1,1,h-1))*unitsphere,gray(0.85));
draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h));
[/asy]
$\textbf{(A) }2+2\sqrt 7\qquad
\textbf{(B) }3+2\sqrt 5\qquad
\textbf{(C) }4+2\sqrt 7\qquad
\textbf{(D) }4\sqrt 5\qquad
\textbf{(E) }4\sqrt 7\qquad$
2003 AIME Problems, 7
Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21$. Point $D$ is not on $\overline{AC}$ so that $AD = CD$, and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s$.
1994 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 4
Two circles with radii 1 and 2 touch each other and a line as in the figure. In the region between the circles and the line, there is a circle with radius $ r$ which touches the two circles and the line. What is $ r$?
[img]http://i250.photobucket.com/albums/gg265/geometry101/GeometryImage2.jpg[/img]
A. 1/3
B. $ \frac {1}{\sqrt {5}}$
C. $ \sqrt {3} \minus{} \sqrt {2}$
D. $ 6 \minus{} 4 \sqrt {2}$
E. None of these
2011 AMC 12/AHSME, 14
A segment through the focus $F$ of a parabola with vertex $V$ is perpendicular to $\overline{FV}$ and intersects the parabola in points $A$ and $B$. What is $\cos(\angle AVB)$?
$ \textbf{(A)}\ -\frac{3\sqrt{5}}{7} \qquad
\textbf{(B)}\ -\frac{2\sqrt{5}}{5} \qquad
\textbf{(C)}\ -\frac{4}{5} \qquad
\textbf{(D)}\ -\frac{3}{5} \qquad
\textbf{(E)}\ -\frac{1}{2} $
2004 AMC 10, 12
An [i]annulus[/i] is the region between two concentric circles. The concentric circles in the figure have radii $ b$ and $ c$, with $ b > c$. Let $ \overline{OX}$ be a radius of the larger circle, let $ \overline{XZ}$ be tangent to the smaller circle at $ Z$, and let $ \overline{OY}$ be the radius of the larger circle that contains $ Z$. Let $ a \equal{} XZ$, $ d \equal{} YZ$, and $ e \equal{} XY$. What is the area of the annulus?
$ \textbf{(A)}\ \pi a^2 \qquad \textbf{(B)}\ \pi b^2 \qquad \textbf{(C)}\ \pi c^2 \qquad \textbf{(D)}\ \pi d^2 \qquad \textbf{(E)}\ \pi e^2$
[asy]unitsize(1.4cm);
defaultpen(linewidth(.8pt));
dotfactor=3;
real r1=1.0, r2=1.8;
pair O=(0,0), Z=r1*dir(90), Y=r2*dir(90);
pair X=intersectionpoints(Z--(Z.x+100,Z.y), Circle(O,r2))[0];
pair[] points={X,O,Y,Z};
filldraw(Circle(O,r2),mediumgray,black);
filldraw(Circle(O,r1),white,black);
dot(points);
draw(X--Y--O--cycle--Z);
label("$O$",O,SSW,fontsize(10pt));
label("$Z$",Z,SW,fontsize(10pt));
label("$Y$",Y,N,fontsize(10pt));
label("$X$",X,NE,fontsize(10pt));
defaultpen(fontsize(8pt));
label("$c$",midpoint(O--Z),W);
label("$d$",midpoint(Z--Y),W);
label("$e$",midpoint(X--Y),NE);
label("$a$",midpoint(X--Z),N);
label("$b$",midpoint(O--X),SE);[/asy]
1996 AMC 12/AHSME, 28
On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices $A$, $B$, and $C$ are adjacent to vertex $D$. The perpendicular distance from $D$ to the plane containing
$A$, $B$, and $C$ is closest to
$\text{(A)}\ 1.6 \qquad \text{(B)}\ 1.9 \qquad \text{(C)}\ 2.1 \qquad \text{(D)}\ 2.7 \qquad \text{(E)}\ 2.9$
2002 Bulgaria National Olympiad, 2
Consider the orthogonal projections of the vertices $A$, $B$ and $C$ of triangle $ABC$ on external bisectors of $ \angle ACB$, $ \angle BAC$ and $ \angle ABC$, respectively. Prove that if $d$ is the diameter of the circumcircle of the triangle, which is formed by the feet of projections, while $r$ and $p$ are the inradius and the semiperimeter of triangle $ABC$, prove that $r^2+p^2=d^2$
[i]Proposed by Alexander Ivanov[/i]
2013 Online Math Open Problems, 36
Let $ABCD$ be a nondegenerate isosceles trapezoid with integer side lengths such that $BC \parallel AD$ and $AB=BC=CD$. Given that the distance between the incenters of triangles $ABD$ and $ACD$ is $8!$, determine the number of possible lengths of segment $AD$.
[i]Ray Li[/i]
2002 AMC 8, 16
Right isosceles triangles are constructed on the sides of a 3-4-5 right triangle, as shown. A capital letter represents the area of each triangle. Which one of the following is true?
[asy]/* AMC8 2002 #16 Problem */
draw((0,0)--(4,0)--(4,3)--cycle);
draw((4,3)--(-4,4)--(0,0));
draw((-0.15,0.1)--(0,0.25)--(.15,0.1));
draw((0,0)--(4,-4)--(4,0));
draw((4,0.2)--(3.8,0.2)--(3.8,-0.2)--(4,-0.2));
draw((4,0)--(7,3)--(4,3));
draw((4,2.8)--(4.2,2.8)--(4.2,3));
label(scale(0.8)*"$Z$", (0, 3), S);
label(scale(0.8)*"$Y$", (3,-2));
label(scale(0.8)*"$X$", (5.5, 2.5));
label(scale(0.8)*"$W$", (2.6,1));
label(scale(0.65)*"5", (2,2));
label(scale(0.65)*"4", (2.3,-0.4));
label(scale(0.65)*"3", (4.3,1.5));[/asy]
$ \textbf{(A)}\ X\plus{}Z\equal{}W\plus{}Y \qquad \textbf{(B)}\ W\plus{}X\equal{}Z \qquad\textbf{(C)}\ 3X\plus{}4Y\equal{}5Z \qquad $
$\textbf{(D)}\ X\plus{}W\equal{}\frac{1}{2}(Y\plus{}Z) \qquad\textbf{(E)}\ X\plus{}Y\equal{}Z$
2012 USAMTS Problems, 2
Three wooden equilateral triangles of side length $18$ inches are placed on axles as shown in the diagram to the right. Each axle is $30$ inches from the other two axles. A $144$-inch leather band is wrapped around the wooden triangles, and a dot at the top corner is painted as shown. The three triangles are then rotated at the same speed and the band rotates without slipping or stretching. Compute the length of the path that the dot travels before it returns to its initial position at the top corner.
[asy]
size(150);
defaultpen(linewidth(0.8)+fontsize(10));
pair A=origin,B=(48,0),C=rotate(60,A)*B;
path equi=(0,0)--(18,0)--(9,9*sqrt(3))--cycle,circ=circle(centroid(A,B,C)*18/48,1/3);
picture a;
fill(a,equi,grey);
fill(a,circ,white);
add(a);
add(shift(15,15*sqrt(3))*a);
add(shift(30,0)*a);
draw(A--B--C--cycle,linewidth(1));
path top = circle(C,2/3);
unfill(top);
draw(top);
real r=-5/2;
draw((9,r+1)--(9,r-1)^^(9,r)--(39,r)^^(39,r-1)--(39,r+1));
label("$30$",(24,r),S);
[/asy]
2014 AMC 8, 14
Rectangle $ABCD$ and right triangle $DCE$ have the same area. They are joined to form a trapezoid, as shown. What is $DE$?
[asy]
size(250);
defaultpen(linewidth(0.8));
pair A=(0,5),B=origin,C=(6,0),D=(6,5),E=(18,0);
draw(A--B--E--D--cycle^^C--D);
draw(rightanglemark(D,C,E,30));
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,S);
label("$D$",D,N);
label("$E$",E,S);
label("$5$",A/2,W);
label("$6$",(A+D)/2,N);
[/asy]
$\textbf{(A) }12\qquad\textbf{(B) }13\qquad\textbf{(C) }14\qquad\textbf{(D) }15\qquad \textbf{(E) }16$
2006 Stanford Mathematics Tournament, 9
$\triangle ABC$ has $AB=AC$. Points $M$ and $N$ are midpoints of $\overline{AB}$ and $\overline{AC}$, respectively. The medians $\overline{MC}$ and $\overline{NB}$ intersect at a right angle. Find $(\tfrac{AB}{BC})^2$.