Found problems: 107
2017 Hanoi Open Mathematics Competitions, 15
Show that an arbitrary quadrilateral can be divided into nine isosceles triangles.
2020 AMC 12/AHSME, 18
Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$?
$\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$
2009 Belarus Team Selection Test, 2
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2016 Poland - Second Round, 5
Quadrilateral $ABCD$ is inscribed in circle. Points $P$ and $Q$ lie respectively on rays $AB^{\rightarrow}$ and $AD^{\rightarrow}$ such that $AP = CD$, $AQ = BC$. Show that middle point of line segment $PQ$ lies on the line $AC$.
2011 Sharygin Geometry Olympiad, 15
Given a circle with center $O$ and radius equal to $1$. $AB$ and $AC$ are the tangents to this circle from point $A$. Point $M$ on the circle is such that the areas of quadrilaterals $OBMC$ and $ABMC$ are equal. Find $MA$.
2021 Latvia TST, 2.4
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
1992 IMO Shortlist, 3
The diagonals of a quadrilateral $ ABCD$ are perpendicular: $ AC \perp BD.$ Four squares, $ ABEF,BCGH,CDIJ,DAKL,$ are erected externally on its sides. The intersection points of the pairs of straight lines $ CL, DF, AH, BJ$ are denoted by $ P_1,Q_1,R_1, S_1,$ respectively (left figure), and the intersection points of the pairs of straight lines $ AI, BK, CE DG$ are denoted by $ P_2,Q_2,R_2, S_2,$ respectively (right figure). Prove that $ P_1Q_1R_1S_1 \cong P_2Q_2R_2S_2$ where $ P_1,Q_1,R_1, S_1$ and $ P_2,Q_2,R_2, S_2$ are the two quadrilaterals.
[i]Alternative formulation:[/i] Outside a convex quadrilateral $ ABCD$ with perpendicular diagonals, four squares $ AEFB, BGHC, CIJD, DKLA,$ are constructed (vertices are given in counterclockwise order). Prove that the quadrilaterals $ Q_1$ and $ Q_2$ formed by the lines $ AG, BI, CK, DE$ and $ AJ, BL, CF, DH,$ respectively, are congruent.
2003 IMO Shortlist, 1
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
2009 Germany Team Selection Test, 3
There is given a convex quadrilateral $ ABCD$. Prove that there exists a point $ P$ inside the quadrilateral such that
\[
\angle PAB \plus{} \angle PDC \equal{} \angle PBC \plus{} \angle PAD \equal{} \angle PCD \plus{} \angle PBA \equal{} \angle PDA \plus{} \angle PCB = 90^{\circ}
\]
if and only if the diagonals $ AC$ and $ BD$ are perpendicular.
[i]Proposed by Dusan Djukic, Serbia[/i]
2008 IMO Shortlist, 6
There is given a convex quadrilateral $ ABCD$. Prove that there exists a point $ P$ inside the quadrilateral such that
\[
\angle PAB \plus{} \angle PDC \equal{} \angle PBC \plus{} \angle PAD \equal{} \angle PCD \plus{} \angle PBA \equal{} \angle PDA \plus{} \angle PCB = 90^{\circ}
\]
if and only if the diagonals $ AC$ and $ BD$ are perpendicular.
[i]Proposed by Dusan Djukic, Serbia[/i]
2009 Ukraine Team Selection Test, 10
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2011 Danube Mathematical Competition, 1
Let $ABCM$ be a quadrilateral and $D$ be an interior point such that $ABCD$ is a parallelogram. It is known that $\angle AMB =\angle CMD$. Prove that $\angle MAD =\angle MCD$.
2011 Tournament of Towns, 3
In a convex quadrilateral $ABCD, AB = 10, BC = 14, CD = 11$ and $DA = 5$. Determine the angle between its diagonals.
2015 Cono Sur Olympiad, 4
Let $ABCD$ be a convex quadrilateral such that $\angle{BAD} = 90^{\circ}$ and its diagonals $AC$ and $BD$ are perpendicular. Let $M$ be the midpoint of side $CD$, and $E$ be the intersection of $BM$ and $AC$. Let $F$ be a point on side $AD$ such that $BM$ and $EF$ are perpendicular. If $CE = AF\sqrt{2}$ and $FD = CE\sqrt{2}$, show that $ABCD$ is a square.
2010 Bosnia And Herzegovina - Regional Olympiad, 2
In convex quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at point $O$ at angle $90^{\circ}$. Let $K$, $L$, $M$ and $N$ be orthogonal projections of point $O$ to sides $AB$, $BC$, $CD$ and $DA$ of quadrilateral $ABCD$. Prove that $KLMN$ is cyclic
2006 Federal Math Competition of S&M, Problem 1
In a convex quadrilateral $ABCD$, $\angle BAC=\angle DAC=55^\circ$, $\angle DCA=20^\circ$, and $\angle BCA=15^\circ$. Find the measure of $\angle DBA$.
1959 AMC 12/AHSME, 3
If the diagonals of a quadrilateral are perpendicular to each other, the figure would always be included under the general classification:
$ \textbf{(A)}\ \text{rhombus} \qquad\textbf{(B)}\ \text{rectangles} \qquad\textbf{(C)}\ \text{square} \qquad\textbf{(D)}\ \text{isosceles trapezoid}\qquad\textbf{(E)}\ \text{none of these} $
2001 Austrian-Polish Competition, 4
Prove that if $a,b,c,d$ are lengths of the successive sides of a quadrangle (not necessarily convex) with the area equal to $S$, then the following inequality holds \[S \leq \frac{1}{2}(ac+bd).\] For which quadrangles does the inequality become equality?
2018 Yasinsky Geometry Olympiad, 4
In the quadrilateral $ABCD$, the length of the sides $AB$ and $BC$ is equal to $1, \angle B= 100^o , \angle D= 130^o$ . Find the length of $BD$.
1982 IMO Shortlist, 14
Let $ABCD$ be a convex plane quadrilateral and let $A_1$ denote the circumcenter of $\triangle BCD$. Define $B_1, C_1,D_1$ in a corresponding way.
(a) Prove that either all of $A_1,B_1, C_1,D_1$ coincide in one point, or they are all distinct. Assuming the latter case, show that $A_1$, C1 are on opposite sides of the line $B_1D_1$, and similarly,$ B_1,D_1$ are on opposite sides of the line $A_1C_1$. (This establishes the convexity of the quadrilateral $A_1B_1C_1D_1$.)
(b) Denote by $A_2$ the circumcenter of $B_1C_1D_1$, and define $B_2, C_2,D_2$ in an analogous way. Show that the quadrilateral $A_2B_2C_2D_2$ is similar to the quadrilateral $ABCD.$
2024 CAPS Match, 4
Let $ABCD$ be a quadrilateral, such that $AB = BC = CD.$ There are points $X, Y$ on rays $CA, BD,$ respectively, such that $BX = CY.$ Let $P, Q, R, S$ be the midpoints of segments $BX, CY ,$ $XD, YA,$ respectively. Prove that points $P, Q, R, S$ lie on a circle.
1987 Czech and Slovak Olympiad III A, 1
Given a trapezoid, divide it by a line into two quadrilaterals in such a way that both of them are cyclic with the same circumradius. Discuss conditions of solvability.
1969 IMO Shortlist, 36
$(HUN 3)$ In the plane $4000$ points are given such that each line passes through at most $2$ of these points. Prove that there exist $1000$ disjoint quadrilaterals in the plane with vertices at these points.
2003 IMO, 4
Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
1981 IMO Shortlist, 11
On a semicircle with unit radius four consecutive chords $AB,BC, CD,DE$ with lengths $a, b, c, d$, respectively, are given. Prove that
\[a^2 + b^2 + c^2 + d^2 + abc + bcd < 4.\]