This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

1963 AMC 12/AHSME, 15

Tags: ratio , geometry
A circle is inscribed in an equilateral triangle, and a square is inscribed in the circle. The ratio of the area of the triangle to the area of the square is: $\textbf{(A)}\ \sqrt{3}:1 \qquad \textbf{(B)}\ \sqrt{3}:\sqrt{2} \qquad \textbf{(C)}\ 3\sqrt{3}:2 \qquad \textbf{(D)}\ 3:\sqrt{2} \qquad \textbf{(E)}\ 3:2\sqrt{2}$

2004 Vietnam Team Selection Test, 3

In the plane, there are two circles $\Gamma_1, \Gamma_2$ intersecting each other at two points $A$ and $B$. Tangents of $\Gamma_1$ at $A$ and $B$ meet each other at $K$. Let us consider an arbitrary point $M$ (which is different of $A$ and $B$) on $\Gamma_1$. The line $MA$ meets $\Gamma_2$ again at $P$. The line $MK$ meets $\Gamma_1$ again at $C$. The line $CA$ meets $\Gamma_2 $ again at $Q$. Show that the midpoint of $PQ$ lies on the line $MC$ and the line $PQ$ passes through a fixed point when $M$ moves on $\Gamma_1$. [color=red][Moderator edit: This problem was also discussed on http://www.mathlinks.ro/Forum/viewtopic.php?t=21414 .][/color]

2019 AMC 12/AHSME, 1

Tags: percent , geometry , ratio
The area of a pizza with radius $4$ inches is $N$ percent larger than the area of a pizza with radius $3$ inches. What is the integer closest to $N$? $\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78$

2013 Federal Competition For Advanced Students, Part 1, 4

Let $A$, $B$ and $C$ be three points on a line (in this order). For each circle $k$ through the points $B$ and $C$, let $D$ be one point of intersection of the perpendicular bisector of $BC$ with the circle $k$. Further, let $E$ be the second point of intersection of the line $AD$ with $k$. Show that for each circle $k$, the ratio of lengths $\overline{BE}:\overline{CE}$ is the same.

2008 Postal Coaching, 5

Consider the triangle $ABC$ and the points $D \in (BC),E \in (CA), F \in (AB)$, such that $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}$. Prove that if the circumcenters of triangles $DEF$ and $ABC$ coincide, then the triangle $ABC$ is equilateral.

2012 AMC 10, 15

Three unit squares and two line segments connecting two pairs of vertices are shown. What is the area of $\triangle ABC$? [asy] size(200); defaultpen(linewidth(.6pt)+fontsize(12pt)); dotfactor=4; draw((0,0)--(0,2)); draw((0,0)--(1,0)); draw((1,0)--(1,2)); draw((0,1)--(2,1)); draw((0,0)--(1,2)); draw((0,2)--(2,1)); draw((0,2)--(2,2)); draw((2,1)--(2,2)); label("$A$",(0,2),NW); label("$B$",(1,2),N); label("$C$",(4/5,1.55),W); dot((0,2)); dot((1,2)); dot((4/5,1.6)); dot((2,1)); dot((0,0)); [/asy] $ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{2}{9}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt2}{4} $

2017 AMC 12/AHSME, 8

The ratio of the short side of a certain rectangle to the long side is equal to the ratio of the long side to the diagonal. What is the square of the ratio of the short side to the long side of this rectangle? $\textbf{(A)} \text{ } \frac{\sqrt{3}-1}{2} \qquad \textbf{(B)} \text{ } \frac{1}{2} \qquad \textbf{(C)} \text{ } \frac{\sqrt{5}-1}{2} \qquad \textbf{(D)} \text{ } \frac{\sqrt{2}}{2} \qquad \textbf{(E)} \text{ } \frac{\sqrt{6}-1}{2}$

2010 Tournament Of Towns, 1

Alex has a piece of cheese. He chooses a positive number $a\neq 1$ and cuts the piece into several pieces one by one. Every time he chooses a piece and cuts it in the same ratio $1:a.$ His goal is to divide the cheese into two piles of equal masses. Can he do it?

1997 APMO, 3

Let $ABC$ be a triangle inscribed in a circle and let \[ l_a = \frac{m_a}{M_a} \ , \ \ l_b = \frac{m_b}{M_b} \ , \ \ l_c = \frac{m_c}{M_c} \ , \] where $m_a$,$m_b$, $m_c$ are the lengths of the angle bisectors (internal to the triangle) and $M_a$, $M_b$, $M_c$ are the lengths of the angle bisectors extended until they meet the circle. Prove that \[ \frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3 \] and that equality holds iff $ABC$ is an equilateral triangle.

1966 AMC 12/AHSME, 11

The sides of triangle $BAC$ are in the ratio $2: 3: 4$. $BD$ is the angle-bisector drawn to the shortest side $AC$, dividing it into segments $AD$ and $CD$. If the length of $AC$ is $10$, then the length of the longer segment of $AC$ is: $\text{(A)} \ 3\frac12 \qquad \text{(B)} \ 5 \qquad \text{(C)} \ 5\frac57 \qquad \text{(D)} \ 6 \qquad \text{(E)} \ 7\frac12$

1967 AMC 12/AHSME, 33

Tags: ratio , geometry
[asy] fill(circle((4,0),4),grey); fill((0,0)--(8,0)--(8,-4)--(0,-4)--cycle,white); fill(circle((7,0),1),white); fill(circle((3,0),3),white); draw((0,0)--(8,0),black+linewidth(1)); draw((6,0)--(6,sqrt(12)),black+linewidth(1)); MP("A", (0,0), W); MP("B", (8,0), E); MP("C", (6,0), S); MP("D",(6,sqrt(12)), N); [/asy] In this diagram semi-circles are constructed on diameters $\overline{AB}$, $\overline{AC}$, and $\overline{CB}$, so that they are mutually tangent. If $\overline{CD} \bot \overline{AB}$, then the ratio of the shaded area to the area of a circle with $\overline{CD}$ as radius is: $\textbf{(A)}\ 1:2\qquad \textbf{(B)}\ 1:3\qquad \textbf{(C)}\ \sqrt{3}:7\qquad \textbf{(D)}\ 1:4\qquad \textbf{(E)}\ \sqrt{2}:6$

1980 AMC 12/AHSME, 5

Tags: ratio
If $AB$ and $CD$ are perpendicular diameters of circle $Q$, $P$ in $\overline{AQ}$, and $\measuredangle QPC = 60^\circ$, then the length of $PQ$ divided by the length of $AQ$ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$D$", D, S); label("$P$", P, S); label("$Q$", Q, SE); label("$60^\circ$", P+0.0.5*dir(30), dir(30));[/asy] $ \textbf{(A)} \ \frac{\sqrt{3}}{2} \qquad \textbf{(B)} \ \frac{\sqrt{3}}{3} \qquad \textbf{(C)} \ \frac{\sqrt{2}}{2} \qquad \textbf{(D)} \ \frac12 \qquad \textbf{(E)} \ \frac23 $

2007 Thailand Mathematical Olympiad, 6

Tags: max , angle , geometry , ratio
Let $M$ be the midpoint of a given segment $BC$. Point $A$ is chosen to maximize $\angle ABC$ while subject to the condition that $\angle MAC = 20^o$ . What is the ratio $BC/BA$ ?

1961 AMC 12/AHSME, 12

The first three terms of a geometric progression are $\sqrt{2}, \sqrt[3]{2}, \sqrt[6]{2}$. Find the fourth term. ${{ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \sqrt[7]{2} \qquad\textbf{(C)}\ \sqrt[8]{2} \qquad\textbf{(D)}\ \sqrt[9]{2} }\qquad\textbf{(E)}\ \sqrt[10]{2} } $

2014 Contests, 3

A square and equilateral triangle have the same perimeter. If the triangle has area $16\sqrt3$, what is the area of the square? [i]Proposed by Evan Chen[/i]

2008 AMC 12/AHSME, 20

Tags: ratio
Michael walks at the rate of $ 5$ feet per second on a long straight path. Trash pails are located every $ 200$ feet along the path. A garbage truck travels at $ 10$ feet per second in the same direction as Michael and stops for $ 30$ seconds at each pail. As Michael passes a pail, he notices the truck ahead of him just leaving the next pail. How many times will Michael and the truck meet? $ \textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 8$

2010 Contests, 1

A circle that passes through the vertex $A$ of a rectangle $ABCD$ intersects the side $AB$ at a second point $E$ different from $B.$ A line passing through $B$ is tangent to this circle at a point $T,$ and the circle with center $B$ and passing through $T$ intersects the side $BC$ at the point $F.$ Show that if $\angle CDF= \angle BFE,$ then $\angle EDF=\angle CDF.$

2006 All-Russian Olympiad, 4

Given a triangle $ ABC$. The angle bisectors of the angles $ ABC$ and $ BCA$ intersect the sides $ CA$ and $ AB$ at the points $ B_1$ and $ C_1$, and intersect each other at the point $ I$. The line $ B_1C_1$ intersects the circumcircle of triangle $ ABC$ at the points $ M$ and $ N$. Prove that the circumradius of triangle $ MIN$ is twice as long as the circumradius of triangle $ ABC$.

1994 Turkey Team Selection Test, 1

Tags: geometry , ratio
Let $P,Q,R$ be points on the sides of $\triangle ABC$ such that $P \in [AB],Q\in[BC],R\in[CA]$ and $\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12$ If $G$ is the centroid of $\triangle ABC$, find the ratio $\frac{Area(\triangle PQG)}{Area(\triangle PQR)}$ .

1974 Vietnam National Olympiad, 3

Let $ABC$ be a triangle with $A = 90^o, AH$ the altitude, $P,Q$ the feet of the perpendiculars from $H$ to $AB,AC$ respectively. Let $M$ be a variable point on the line $PQ$. The line through $M$ perpendicular to $MH$ meets the lines $AB,AC$ at $R, S$ respectively. i) Prove that circumcircle of $ARS$ always passes the fixed point $H$. ii) Let $M_1$ be another position of $M$ with corresponding points $R_1, S_1$. Prove that the ratio $RR_1/SS_1$ is constant. iii) The point $K$ is symmetric to $H$ with respect to $M$. The line through $K$ perpendicular to the line $PQ$ meets the line $RS$ at $D$. Prove that$ \angle BHR = \angle DHR, \angle DHS = \angle CHS$.

2009 Junior Balkan Team Selection Test, 2

In isosceles right triangle $ ABC$ a circle is inscribed. Let $ CD$ be the hypotenuse height ($ D\in AB$), and let $ P$ be the intersection of inscribed circle and height $ CD$. In which ratio does the circle divide segment $ AP$?

2003 Greece JBMO TST, 4

Given are two points $B,C$. Consider point $A$ not lying on the line $BC$ and draw the circles $C_1(K_1,R_1)$ (with center $K_1$ and radius $R_1$) and $C_2(K_2,R_2)$ with chord $AB, AC$ respectively such that their centers lie on the interior of the triangle $ABC$ and also $R_1 \cdot AC= R_2 \cdot AB$. Let $T$ be the intersection point of the two circles, different from $A$, and M be a random pointof line $AT$, prove that $TC \cdot S_{(MBT)}=TB \cdot S_{(MCT)}$

1993 APMO, 3

Let \begin{eqnarray*} f(x) & = & a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \ \ \mbox{and} \\ g(x) & = & c_{n+1} x^{n+1} + c_n x^n + \cdots + c_0 \end{eqnarray*} be non-zero polynomials with real coefficients such that $g(x) = (x+r)f(x)$ for some real number $r$. If $a = \max(|a_n|, \ldots, |a_0|)$ and $c = \max(|c_{n+1}|, \ldots, |c_0|)$, prove that $\frac{a}{c} \leq n+1$.

1997 Slovenia National Olympiad, Problem 3

Tags: ratio , geometry
In a convex quadrilateral $ABCD$ we have $\angle ADB=\angle ACD$ and $AC=CD=DB$. If the diagonals $AC$ and $BD$ intersect at $X$, prove that $\frac{CX}{BX}-\frac{AX}{DX}=1$.

2012 NIMO Summer Contest, 5

Tags: geometry , ratio
In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$. [asy] size(250); defaultpen (linewidth (0.7) + fontsize (10)); pair O = origin, A = (1, 1), B = (4/3, 1/3), C = (2/3, 5/3), P = (3/2, 0), Q = (0,3); draw (P--O--Q--cycle^^(0, 5/3)--C--(2/3,1)^^(0,1)--A--(1,0)^^(1,1/3)--B--(4/3,0)); label("$A$", (.5,.5)); label("$M$", (7/6, 1/6)); label("$N$", (1/3, 4/3));[/asy] [i]Proposed by Aaron Lin[/i]