This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2004 Miklós Schweitzer, 3

Prove that there is a constant $c>0$ such that for any $n>3$ there exists a planar graph $G$ with $n$ vertices such that every straight-edged plane embedding of $G$ has a pair of edges with ratio of lengths at least $cn$.

1962 AMC 12/AHSME, 31

Tags: ratio
The ratio of the interior angles of two regular polygons with sides of unit length is $ 3: 2$. How many such pairs are there? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ \text{infinitely many}$

2022 Bulgarian Spring Math Competition, Problem 12.2

Let $ABCDV$ be a regular quadrangular pyramid with $V$ as the apex. The plane $\lambda$ intersects the $VA$, $VB$, $VC$ and $VD$ at $M$, $N$, $P$, $Q$ respectively. Find $VQ : QD$, if $VM : MA = 2 : 1$, $VN : NB = 1 : 1$ and $VP : PC = 1 : 2$.

2011 Junior Balkan MO, 3

Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.

2009 Miklós Schweitzer, 12

Let $ Z_1,\,Z_2\dots,\,Z_n$ be $ d$-dimensional independent random (column) vectors with standard normal distribution, $ n \minus{} 1 > d$. Furthermore let \[ \overline Z \equal{} \frac {1}{n}\sum_{i \equal{} 1}^n Z_i,\quad S_n \equal{} \frac {1}{n \minus{} 1}\sum_{i \equal{} 1}^n(Z_i \minus{} \overline Z)(Z_i \minus{} \overline Z)^\top\] be the sample mean and corrected empirical covariance matrix. Consider the standardized samples $ Y_i \equal{} S_n^{ \minus{} 1/2}(Z_i \minus{} \overline Z)$, $ i \equal{} 1,2,\dots,n$. Show that \[ \frac {E|Y_1 \minus{} Y_2|}{E|Z_1 \minus{} Z_2|} > 1,\] and that the ratio does not depend on $ d$, only on $ n$.

2012 Finnish National High School Mathematics Competition, 1

A secant line splits a circle into two segments. Inside those segments, one draws two squares such that both squares has two corners on a secant line and two on the circumference. The ratio of the square's side lengths is $5:9$. Compute the ratio of the secant line versus circle radius.

2004 AMC 10, 25

Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere? $ \textbf{(A)}\; 3+\frac{\sqrt{30}}2\qquad \textbf{(B)}\; 3+\frac{\sqrt{69}}3\qquad \textbf{(C)}\; 3+\frac{\sqrt{123}}4\qquad \textbf{(D)}\; \frac{52}9\qquad \textbf{(E)}\; 3+2\sqrt{2} $

Estonia Open Junior - geometry, 2019.1.5

Point $M$ lies on the diagonal $BD$ of parallelogram $ABCD$ such that $MD = 3BM$. Lines $AM$ and $BC$ intersect in point $N$. What is the ratio of the area of triangle $MND$ to the area of parallelogram $ABCD$?

1976 IMO Longlists, 42

Tags: geometry , ratio
For a point $O$ inside a triangle $ABC$, denote by $A_1,B_1, C_1,$ the respective intersection points of $AO, BO, CO$ with the corresponding sides. Let \[n_1 =\frac{AO}{A_1O}, n_2 = \frac{BO}{B_1O}, n_3 = \frac{CO}{C_1O}.\] What possible values of $n_1, n_2, n_3$ can all be positive integers?

2006 Sharygin Geometry Olympiad, 25

In the tetrahedron $ABCD$ , the dihedral angles at the $BC, CD$, and $DA$ edges are equal to $\alpha$, and for the remaining edges equal to $\beta$. Find the ratio $AB / CD$.

2014 Contests, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

1972 Dutch Mathematical Olympiad, 5

Tags: geometry , ratio
Given is an acute-angled triangle $ABC$ with angles $\alpha$, $\beta$ and $\gamma$. On side $AB$ lies a point $P$ such that the line connecting the feet of the perpendiculars from $P$ on $AC$ and $BC$ is parallel to $AB$. Express the ratio $\frac{AP}{BP}$ in terms of $\alpha$ and $\beta$.

2012 Iran MO (3rd Round), 3

Cosider ellipse $\epsilon$ with two foci $A$ and $B$ such that the lengths of it's major axis and minor axis are $2a$ and $2b$ respectively. From a point $T$ outside of the ellipse, we draw two tangent lines $TP$ and $TQ$ to the ellipse $\epsilon$. Prove that \[\frac{TP}{TQ}\ge \frac{b}{a}.\] [i]Proposed by Morteza Saghafian[/i]

1995 All-Russian Olympiad Regional Round, 9.2

Is it possible to place $1995$ different natural numbers along a circle so that for any two of these numbers, the ratio of the greatest to the least is a prime? I feel that my solution's wording and notation is awkward (and perhaps unnecessarily complicated), so please feel free to critique it: [hide] Suppose that we do have such a configuration $a_{1},a_{2},...a_{1995}$. WLOG, $a_{2}=p_{1}a_{1}$. Then \[\frac{a_{2}}{a_{3}}= p_{2}, \frac{1}{p_{2}}\] \[\frac{a_{3}}{a_{4}}= p_{3}, \frac{1}{p_{3}}\] \[... \] \[\frac{a_{1995}}{a_{1}}= p_{1995}, \frac{1}{p_{1995}}\] Multiplying these all together, \[\frac{a_{2}}{a_{1}}= \frac{\prod p_{k}}{\prod p_{j}}= p_{1}\] Where $\prod p_{k}$ is some product of the elements in a subset of $\{ p_{2},p_{3}, ...p_{1995}\}$. We clear denominators to get \[p_{1}\prod p_{j}= \prod p_{k}\] Now, by unique prime factorization, the set $\{ p_{j}\}\cup \{ p_{1}\}$ is equal to the set $\{ p_{k}\}$. However, since there are a total of $1995$ primes, this is impossible. We conclude that no such configuration exists. [/hide]

2025 Euler Olympiad, Round 1, 6

Tags: ratio , geometry
There are seven rays emanating from a point $A$ on a plane, such that the angle between the two consecutive rays is $30 ^{\circ}$. A point $A_1$ is located on the first ray. The projection of $A_1$ onto the second ray is denoted as $A_2$. Similarly, the projection of $A_2$ onto the third ray is $A_3$, and this process continues until the projection of $A_6$ onto the seventh ray is $A_7$. Find the ratio $\frac{A_7A}{A_1A}$. [img]https://i.imgur.com/oxixe5q.png[/img] [i]Proposed by Giorgi Arabidze, Georgia[/i]

2009 China Team Selection Test, 1

Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$

2014 Taiwan TST Round 3, 3

Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.

2014 Sharygin Geometry Olympiad, 7

A parallelogram $ABCD$ is given. The perpendicular from $C$ to $CD$ meets the perpendicular from $A$ to $BD$ at point $F$, and the perpendicular from $B$ to $AB$ meets the perpendicular bisector to $AC$ at point $E$. Find the ratio in which side $BC$ divides segment $EF$.

1989 AMC 8, 24

Suppose a square piece of paper is folded in half vertically. The folded paper is then cut in half along the dashed line. Three rectangles are formed-a large one and two small ones. What is the ratio of the perimeter of one of the small rectangles to the perimeter of the large rectangle? $\text{(A)}\ \frac{1}{2} \qquad \text{(B)}\ \frac{2}{3} \qquad \text{(C)}\ \frac{3}{4} \qquad \text{(D)}\ \frac{4}{5} \qquad \text{(E)}\ \frac{5}{6}$ [asy] draw((0,0)--(0,8)--(6,8)--(6,0)--cycle); draw((0,8)--(5,9)--(5,8)); draw((3,-1.5)--(3,10.3),dashed); draw((0,5.5)..(-.75,4.75)..(0,4)); draw((0,4)--(1.5,4),EndArrow); [/asy]

2013 AIME Problems, 5

In equilateral $\triangle ABC$ let points $D$ and $E$ trisect $\overline{BC}$. Then $\sin \left( \angle DAE \right)$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is an integer that is not divisible by the square of any prime. Find $a+b+c$.

2019 AMC 10, 11

Tags: ratio
Two jars each contain the same number of marbles, and every marble is either blue or green. In Jar 1 the ratio of blue to green marbles is 9:1, and the ratio of blue to green marbles in Jar 2 is 8:1. There are 95 green marbles in all. How many more blue marbles are in Jar 1 than in Jar 2? $\textbf{(A) } 5 \qquad\textbf{(B) } 10 \qquad\textbf{(C) } 25 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 50$

2014 International Zhautykov Olympiad, 3

Given are 100 different positive integers. We call a pair of numbers [i]good[/i] if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.) [i]Proposed by Alexander S. Golovanov, Russia[/i]

2012 National Olympiad First Round, 1

Find the perimeter of a triangle whose altitudes are $3,4,$ and $6$. $ \textbf{(A)}\ 12\sqrt\frac35 \qquad \textbf{(B)}\ 16\sqrt\frac35 \qquad \textbf{(C)}\ 20\sqrt\frac35 \qquad \textbf{(D)}\ 24\sqrt\frac35 \qquad \textbf{(E)}\ \text{None}$

1997 Pre-Preparation Course Examination, 2

Let $P$ be a variable point on arc $BC$ of the circumcircle of triangle $ABC$ not containing $A$. Let $I_1$ and $I_2$ be the incenters of the triangles $PAB$ and $PAC$, respectively. Prove that: [b](a)[/b] The circumcircle of $?PI_1I_2$ passes through a fixed point. [b](b)[/b] The circle with diameter $I_1I_2$ passes through a fixed point. [b](c)[/b] The midpoint of $I_1I_2$ lies on a fixed circle.

2007 India IMO Training Camp, 1

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.